

IGCSE Chemistry 4335 2H Mark Scheme (Results) Summer 2008

IGCSE

IGCSE Chemistry 4335 2H

IGCSE CHEMISTRY 4335-2H MARK SCHEME

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	electrolysis			(1)
1 (a)(ii)	graphite / carbon			(1)
1 (a)(iii)	- on left and + on right			(1)
1 (a)(iv)	aluminium oxide / alumina cryolite	accept correct formulae ignore bauxite		1 1 (2)
1 (a)(v)	electricity (ignore qualifications) / electrical energy (not energy alone)	anode/positive electrode replacement	cathode /electrode replacement	(1)
1 (b)(i)	oxygen			(1)
1 (b)(ii)	•carbon dioxide / carbon monoxide •graphite/carbon/electrode oxidised/burned/reacts with oxygen	accept correct formulae (ignore lower case)	lists equation	1 1 (2)
				9
2 (a)(i)	Any two from: •same or similar chemical properties / same functional group • gradation in physical properties •neighbouring/successive members differ by CH2	gradation of specified physical property (eg: boiling point/bp(t), melting point/mp(t), viscosity)	NOT a specified chemical property different/ same physical properties	(2)
2 (a)(ii)	alkene			(1)
2 (a)(iii)	CnH2n	any other letter in place of "n"		(1)
2 (b)(i)	(H) one electron shown (C) two electrons in first shell and four in second shell	aAccept any symbol for electrons.	electrons on nucleus	1 1 (2)
2 (b)(ii)	 •all five atoms and four shared pairs of electrons •no extra outer electrons. 	IGNORE inner electrons		1 1 (2)
2 (b)(iii)	tetrahedral			(1)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	•(compounds with) same molecular formula •(but) different structural formulae / displayed formula/structure / atoms arranged differently (same) elements = 0 marks	mark independently	same chemical formula. Reject substances.	1 1 (2)
2 (c)(ii) Correct structures of butane and methylpropane. ALL bonds shown Penalise sticks with missing H once only				1 1 (2)
				13
3 (a)(i)	2			(1)
3 (a)(ii)	2.8.2			(1)
3 (b)(i)	any two from •effervescence / fizzing / bubbles • cloudiness / white precipitate /milky / white suspension •Ca get smaller / disappears (ignore dissolves). •Ca moves up and down	ignore gas made ignore floats/moves	List	(2)
3 (b)(ii)	Ca(OH)2			(1)
3 (b)(iii)	 blue alkali / OH⁻ / hydroxide / pH >7 (ignore base) stated pH value in range 8-14 		purple	1 1 (2)
3 (c)(i)	grey / silver(y)white			1 1 (2)
3 (c)(ii)	any two from over/through water / downward displacement of water (gas) syringe upward delivery / downward displacement of air	a description of this suitable diagrams	gas cylinder	(2)
3 (c)(iii)	hydrogen + oxygen → water / steam	ignore heat	formulae	(1)
				12

Question	Correct Answer	Acceptable	Reject	Mark
Number		Answers	_	
4 (a)(i)	ammonia / NH3		ammonium	(4)
4 (a)(ii)	chloride / Cl ⁻		NH ₄ chlorine	(1)
4 (a)(II)	Chloride / Ci		CI	
			CI ₂	(1)
4 (a)(iii)	copper(II) / Cu ²⁺ / copper /cupric	cupper	copper(I)	
			cuprous Cu⁺	(1)
4 (a)(iv)	iron(II) / Fe ²⁺ / ferrous		Fe ³⁺	(1)
(-)(-)			ferric	
. (1.) (2)	(41)		iron	(1)
4 (b)(i)	CuSO4 / copper((II)) sulphate			(1)
4 (b)(ii)	•KNO ₃ / potassium nitrate	potassium/C		(1)
4 (0)(11)	•lilac (dependent on correct	pink	purple	
	compound)	'	' '	
	OR	(D		
	•CuSO4 / copper((II)) sulphate	copper/B	blue	
	•green / blue-green (dependent on correct compound)		bluc	
	on correct compoundy			(2)
4 (c)(i)	yellow precipitate/ppt/ppte	suspension		
. () (1)				(1)
4 (c)(ii)	$AgNO_3(aq) + Lil(aq) \rightarrow Agl(s) + LiNO_3(aq)$	if all correct but balanced		
	Lil(aq) + AgNO ₃ (aq)	wrongly, award 2		
	formulae of products	marks		
	state symbols of products			
	(dependent on correct product formulae)			(3)
	Torriurae)			(3)
				11
5 (a)(i)	diffusion			(4)
5 (a)(ii)	emontion of particles (if particles	(accept		(1)
5 (a)(ii)	•mention of particles (if particles named, must be correct) in	molecules/ ions)		1 1
	correct context	move (from high		(2)
	•moving (randomly)	to low		
E (b)(i)	(blue) pat apleur pet peeded	concentration)	dark /royal /	
5 (b)(i)	•(blue) ppt - colour not needed but penalise ppt if colour is	ignore changes to colour of solution	dark/royal/ deep blue	1
	wrong	Solution	ppt	1
	•deep/dark/royal blue			1
E (1) (1)	•solution / dissolves			(3)
5 (b)(ii)	[Cu(H2O)2(NH3)4] ²⁺ / [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺	formulae without		(1)
				(1)
				7

Question	Correct Answer	Acceptable	Reject	Mark
Number 6 (a)(i)	Any three from •float/on surface •fizz/bubble (ignore gas) •move/dart about	ignore references to flames / igniting		
	melt/form sphere/ballNa gets smaller / disappears (ignore dissolves)			(3)
6 (a)(ii)	2Na + 2H2O →2 NaOH + H2 •correct formulae •balancing (dependent on first mark being awarded)	Na(OH) any multiple		(2)
6 (a)(iii)	Moves/bubbles faster/(more) violent/more vigorous/catches fire/flame/ explodes		reaction faster/ it is faster	(1)
6 (b)(i)	 sodium loses electron(s) oxygen gains electrons correct number of electrons for each atom marks could be gained by suitable additions to printed 	indication of 2 Na and 1 O	any reference to sharing /covalent gives O	
6 (b)(ii)	•strong attractive forces / bonds (regardless of what these are			(3)
	between) •between <u>ions</u> •require a lot of energy to		second mark not given if atoms /	1 1
	overcome / difficult to break (regardless of what these are between)		molecules / intermolecul ar	(3)
6 (b)(iii)	stronger attractive forces / bondingmagnesium ion 2+, sodium ion	ignore more bonds/ intermolecular	MgO Covalent = 0 delocalised	1
	1+ / magnesium loses 2 electrons, sodium loses 1 electron/magnesium ions are smaller or have bigger charge or are more highly charged (must state or imply comparison between Mg and Na)	forces	electrons = 0	(2)
				14

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)	any five from: •add magnesium carbonate to acid •stir/mix •excess magnesium carbonate • filter / centrifuge and decant •heat or evaporate filtrate and stop evaporation at a suitable point / heat filtrate and leave to cool / leave filtrate to evaporate or to crystallise or for suitable time / place in oven below 100 °C •dry crystals with (filter) paper /desiccator	Ignore indicators •If use sodium carbonate (or other soluble carbonate)only points 2,5,6 •If use other insoluble carbonate, all bar first point. •Wrong method of prep. Then get 5 and 6 only.	heat to dryness, can not get 5 or 6	(5)
7 (b)(i)	•colourless •to pink	if just state "pink" with no start colour, then score 1	purple / red	1 1 (2)
7 (b)(ii)	•0.150 x 0.00870 •=0.00131 correct answer scores 2 (moles)	incorrect or failure to convert volume to dm ³ gives max 1 accept 2 to 4 sig figs (0.001305)	wrong numbers used = 0	1 1 (2)
7 (b)(iii)	(ii) ÷ 2 = 0.000653 (moles)	cq on b(ii) accept 2 to 4 sig figs (0.006525)		(1)
7 (b)(iv)	(iii) ÷ 0.025 = 0.0261 (mol dm ⁻³)	cq on b(iii) accept 2 to 4 sig figs (0.02612)		(1)
				11

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
8 (a)(i)	add (named) acidbubbles/effervescence/fizzingOR gas produced turns limewater milky	2 nd mark possible only if acid added		1 1 (2)
8 (a)(ii)	2NaOH + CO2 → Na2CO3 + H2O formulae = 1 balancing = 1 (only if formulae correct)	accept any multiple		(2)
8 (b)	 no change / remains clear carbon dioxide reacted /removed(by sodium hydroxide) / formed sodium carbonate / 			1 1 (2)
8 (c)(i)	 Mr NaHCO3 = 84 moles = 4.2 ÷ 84 = 0.05(0) ignore any units Correct answer scores 3 If M_r incorrect, max 2 (107 gives 0.039; 168 gives 0.025) 			1 1 1 (3)
8 (c)(ii)	(i) ÷ 2 = 0.025 ignore any units	cq		(1)
8 (c)(iii)	(ii) x 24 (dm³) =0.6 unit not required but penalise incorrect units.	cq	answer in cm ³	(1)
				11
9 (a)	any in range 40 to 100			(1)
9 (b)(i)	H2 + Cl2 →2HCl formulae = 1 balancing = 1 (only if formulae correct) accept any multiples		CL	(2)
9 (b)(ii)	water: • paper becomes red (NOT orange) • acidic / H ⁺ ions produced	red/orange	orange Ionizes alone	1 1
	methylbenzene: • no change / orange • no H+ ions formed / not acidic /does not ionise (indep. of colour)	ignore refs to being neutral	green references to acidity of	1 1 (4)
	Colour)		methyl benzene	
				7

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
10 (a)(i)	galvanising / sacrificial protection			(1)
10 (a)(ii)	railings / cars /bridges / buckets / watering cans / lamp posts etc.	accept ships/boats even though zinc blocks and not a continuous layer used	bikes	(1)
10 (a)(iii)	 zinc more reactive (than iron) zinc reacts/corrodes/oxidises in preference to /before /instead of iron 	It is more reactive than iron	It is more reactive zinc rusts protective coating of zinc oxide	1 (2)
10 (b)	 make solution of nickel nitrate add metal if reaction occurs then metal is more reactive than nickel OR work down from top of list until no reaction occurs / work up from bottom of list until reaction does occur. 	displacement reaction without making a solution is max 2	reaction with anything else (such as HCI(aq)) is zero react with metal (for 2 nd mark)	1 1 1
10 (c)(i)	Reduced because gain of electrons	reduced because oxidation state decreases		(1)
10 (c)(ii)	 •Q=1.5 x 160 = 240(coulombs) •Faradays = 240÷96000 = 0.0025 (cq) •Moles Ni = 0.0025÷2 = 0.00125 (cq) • mass Ni = 0.00125 x 59 = 0.074 (g) (0.0737 or 0.07375) (cq). (0.0025 x 59 is max 3) units not required Final answer correct = 4 marks 	Accept 2 or more sig figs (1 sig fig max 3) Accept use of 96500 0.00249 0.001245 0.07337	incorrect use of kg or mg	1 1 1 1 (4)
	riliai answer correct = 4 marks			12

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
11 (a)(i)	•appropriate catalyst alumina/aluminium oxide/porous pot/(conc) phosphoric acid / conc	ignore references to pressure	aluminium	1
	sulphuric acid.) •heat / high temperature	150 - 1000°C		1
	,			(2)
11 (a)(ii)	correct energy level for endothermic (higher) and one	Ignore any activation		1
	from • products marked with correct names/formulae Mark independently	energies shown		1
	Mark independently			(2)
11 (a)(iii)	 •Increased •endothermic (left to right) or description of endothermic / ∆H is positive 	ignore references to rate	if decreased or stays the same = zero	1
	is positive			(2)
11 (b)	•correct structure with minimum 4 carbons	Ignore "n" subscripts	any structure with C=C or	1
	•continuation bonds shown (not just dots) (brackets not required)		based on wrong repeat unit = 0	1
				(2)

If calculate empirical first: •Correct empirical formula with some correct working = 3	Question Number	Correct Ans	Correct Answer			Accep Answe		Reject	Mark
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Correct ensome correct ensome correct ensome correct division by Ar division by smallest empiric al Correct many correct mass of ensone ensorement each element	mpirical foot working 38.7/12 = 3.23 3.23 / 3.23 = 1 olecular foot working) mpirical molecula 38.7 x .62 = 24	ormula with $g = 3$ 9.70/1 = 9.70 / 9.70 / 3.23 = 3 CH ₃ O ormula (wi = 2 31 $C_2H_6O_2$ r first 9.70 x 62 = 6	51 16 3.2 3.2 3.2 tth	If A _r in use Z A _r the off Mark = 23f NO 23howr 23l £acl two a regard order	ncorrect/ in place of en lose first working i, then max h for the nswers	totally	1 1 2 1 1 1 2
13		by A _r correct mol working = 3	= 2 lecular wi	$\frac{C_2H_6O_2}{\text{th some}}$					13

PAPER TOTAL 120 MARKS