IGCSE Chemistry 4335 2H
 Mark Scheme (Results) Summer 2008

IGCSE

IGCSE Chemistry 4335 2H

IGCSE CHEMISTRY 4335-2H MARK SCHEME

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1 (a)(i)	electrolysis			(1)
1 (a)(ii)	graphite / carbon			(1)
1 (a)(iii)	- on left and +on right			(1)
1 (a)(iv)	aluminium oxide / alumina cryolite	accept correct formulae ignore bauxite		$\begin{gathered} 1 \\ 1 \\ 1 \\ \hline(2) \\ \hline \end{gathered}$
1 (a)(v)	electricity (ignore qualifications) / electrical energy (not energy alone)	anode/ positive electrode replacement	cathode / electrode replacement	(1)
1 (b)(i)	oxygen			(1)
1 (b)(ii)	- carbon dioxide / carbon monoxide - graphite/ carbon/ electrode oxidised/burned/reacts with oxygen	accept correct formulae (ignore lower case)	lists equation	$\begin{gathered} 1 \\ 1 \\ (2) \end{gathered}$
				9
2 (a)(i)	Any two from: - same or similar chemical properties / same functional group - gradation in physical properties - neighbouring/ successive members differ by CH2	gradation of specified physical property (eg: boiling point/bp(t), melting point/mp(t), viscosity)	NOT a specified chemical property different/ same physical properties	(2)
2 (a)(ii)	alkene			(1)
2 (a)(iii)	CnH2n	any other letter in place of " n "		(1)
2 (b)(i)	-(H) one electron shown -(C) two electrons in first shell and four in second shell	aAccept any symbol for electrons.	electrons on nucleus	$\begin{gathered} 1 \\ 1 \\ (2) \end{gathered}$
2 (b)(ii)	-all five atoms and four shared pairs of electrons - no extra outer electrons.	IGNORE inner electrons		$\begin{gathered} 1 \\ 1 \\ 1 \\ \hline \end{gathered}$
2 (b)(iii)	tetrahedral			(1)

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2 (c)(i)	-(compounds with) same molecular formula -(but) different structural formulae / displayed formula/ structure / atoms arranged differently (same) elements $=0$ marks	mark independently	same chemical formula. Reject substances.	1 1 (2)
2 (c)(ii)	Correct structures of butane and methylpropane. ALL bonds shown Penalise sticks with missing H once only			$\begin{gathered} \hline 1 \\ 1 \\ (2) \end{gathered}$
				13
3 (a)(i)	2			(1)
3 (a)(ii)	2.8.2			(1)
3 (b)(i)	any two from - effervescence / fizzing / bubbles - cloudiness/ white precipitate / milky / white suspension -Ca get smaller / disappears (ignore dissolves). -Ca moves up and down	ignore gas made ignore floats/ moves	List	(2)
3 (b)(ii)	$\mathrm{Ca}(\mathrm{OH}) 2$			(1)
3 (b)(iii)	-blue - alkali / OH^{-}/ hydroxide / pH >7 (ignore base) -stated pH value in range 8-14		purple	$\begin{gathered} \hline 1 \\ 1 \\ (2) \end{gathered}$
3 (c)(i)	- grey / silver(y) -white			$\begin{gathered} \hline 1 \\ 1 \\ (2) \end{gathered}$
3 (c)(ii)	any two from - over/ through water / downward displacement of water - (gas) syringe - upward delivery / downward displacement of air	a description of this suitable diagrams	gas cylinder	(2)
3 (c)(iii)	hydrogen +oxygen \rightarrow water / steam	ignore heat	formulae	(1)
				12

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4 (a)(i)	ammonia / NH3		ammonium NH_{4}	(1)
4 (a)(ii)	chloride / Cl^{-}		$\begin{array}{\|l\|} \hline \text { chlorine } \\ \mathrm{Cl} \\ \mathrm{Cl}_{2} \\ \hline \end{array}$	(1)
4 (a)(iii)	copper(II) / Cu^{2+} / copper / cupric	cupper	copper(I) cuprous Cu^{+}	(1)
4 (a)(iv)	iron(II) / Fe^{2+} / ferrous		$\begin{aligned} & \begin{array}{l} \mathrm{Fe}^{3+} \\ \text { ferric } \end{array} \end{aligned}$ iron	(1)
4 (b)(i)	CuS04 / copper((II)) sulphate			(1)
4 (b)(ii)	$-\mathrm{KNO}_{3} /$ potassium nitrate - lilac (dependent on correct compound) OR -CuSO4 / copper((II)) sulphate -green / blue-green (dependent on correct compound)	potassium/ C pink copper/ B	purple blue	(2)
4 (c)(i)	yellow precipitate/ppt/ppte	suspension		(1)
4 (c)(ii)	$\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Lil}(\mathrm{aq}) \rightarrow \mathrm{Agl}(\mathrm{~s})+$ $\mathrm{LiNO}_{3}(\mathrm{aq})$ $\mathrm{Lil}(\mathrm{aq})+\mathrm{AgNO}_{3}(\mathrm{aq})$ formulae of products state symbols of products (dependent on correct product formulae)	if all correct but balanced wrongly, award 2 marks		(3)
				11
5 (a)(i)	diffusion			(1)
5 (a)(ii)	-mention of particles (if particles named, must be correct) in correct context - moving (randomly)	(accept molecules/ ions) move (from high to low concentration)		$\begin{gathered} 1 \\ 1 \\ (2) \end{gathered}$
5 (b)(i)	-(blue) ppt - colour not needed but penalise ppt if colour is wrong -deep/ dark/ royal blue -solution / dissolves	ignore changes to colour of solution	dark/ royal/ deep blue ppt	1 1 (3)
5 (b)(ii)	$\begin{aligned} & {\left[\mathrm{Cu}(\mathrm{H} 2 \mathrm{O}) 2\left(\mathrm{NH}_{3}\right) 4\right]^{2+} /} \\ & {\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}} \\ & \hline \end{aligned}$	formulae without []		(1)
				7

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
6 (a)(i)	Any three from -float/ on surface -fizz/ bubble (ignore gas) -move/ dart about -melt/ form sphere/ ball - Na gets smaller / disappears (ignore dissolves)	ignore references to flames / igniting		(3)
6 (a)(ii)	$2 \mathrm{Na}+2 \mathrm{H} 2 \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H} 2$ - correct formulae -balancing (dependent on first mark being awarded)	$\mathrm{Na}(\mathrm{OH})$ any multiple		(2)
6 (a)(iii)	Moves/ bubbles faster/ (more) violent/ more vigorous/ catches fire/ flame/ explodes		reaction faster/ it is faster	(1)
6 (b)(i)	-sodium loses electron(s) - oxygen gains electrons -correct number of electrons for each atom marks could be gained by suitable additions to printed diagram	indication of 2 Na and 10	any reference to sharing / covalent gives 0	(3)
6 (b)(ii)	- strong attractive forces / bonds (regardless of what these are between) -between ions - require a lot of energy to overcome / difficult to break (regardless of what these are between)		second mark not given if atoms / molecules / intermolecul ar	1 1 (3)
6 (b)(iii)	- stronger attractive forces / bonding - magnesium ion $2+$, sodium ion 1+/ magnesium loses 2 electrons, sodium loses 1 electron/ magnesium ions are smaller or have bigger charge or are more highly charged (must state or imply comparison between Mg and Na)	ignore more bonds/ intermolecular forces	$\begin{aligned} & \text { MgO Covalent } \\ & =0 \\ & \text { delocalised } \\ & \text { electrons }=0 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$ (2)
				14

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
7 (a)	any five from: - add magnesium carbonate to acid -stir/ mix -excess magnesium carbonate - filter / centrifuge and decant -heat or evaporate filtrate and stop evaporation at a suitable point / heat filtrate and leave to cool / leave filtrate to evaporate or to crystallise or for suitable time / place in oven below $100^{\circ} \mathrm{C}$ -dry crystals with (filter) paper / desiccator	Ignore indicators -If use sodium carbonate (or other soluble carbonate) only points 2,5,6 -If use other insoluble carbonate, all bar first point. -Wrong method of prep. Then get 5 and 6 only.	heat to dryness, can not get 5 or 6	(5)
7 (b)(i)	- colourless -to pink	if just state "pink" with no start colour, then score 1	purple / red	$\begin{gathered} 1 \\ 1 \\ 1 \\ (2) \end{gathered}$
7 (b)(ii)	```\bullet0.150 x 0.00870 \bullet0.00131 correct answer scores 2 (moles)```	incorrect or failure to convert volume to dm^{3} gives max 1 accept 2 to 4 sig figs (0.001305)	wrong numbers used $=0$	$\begin{gathered} 1 \\ 1 \\ (2) \end{gathered}$
7 (b)(iii)	$\begin{aligned} & \text { (ii) } \div 2=0.000653 \\ & \text { (moles) } \end{aligned}$	cq on b(ii) accept 2 to 4 sig figs (0.006525)		(1)
7 (b)(iv)	$\begin{aligned} & \text { (iii) } \div 0.025=0.0261 \\ & \left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$	$\begin{aligned} & \text { cq on b(iii) } \\ & \text { accept } 2 \text { to } 4 \text { sig } \\ & \text { figs } \\ & (0.02612) \end{aligned}$		(1)
				11

$\left.\begin{array}{|l|l|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \begin{array}{l}\text { Correct Answer }\end{array} & \text { Reject } \\ \text { Answers }\end{array}\right)$

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
10 (a)(i)	galvanising / sacrificial protection			(1)
10 (a)(ii)	railings / cars / bridges / buckets / watering cans / lamp posts etc.	accept ships/ boats even though zinc blocks and not a continuous layer used	bikes	(1)
10 (a)(iii)	- zinc more reactive (than iron) - zinc reacts/ corrodes/ oxidises in preference to / before / instead of iron	It is more reactive than iron	It is more reactive zinc rusts protective coating of zinc oxide	1 1 (2)
10 (b)	- make solution of nickel nitrate - add metal - if reaction occurs then metal is more reactive than nickel OR - work down from top of list until no reaction occurs / work up from bottom of list until reaction does occur.	displacement reaction without making a solution is max 2	reaction with anything else (such as $\mathrm{HCl}(\mathrm{aq})$) is zero react with metal (for $2^{\text {nd }}$ mark)	1 1 1 (3)
10 (c)(i)	Reduced because gain of electrons	reduced because oxidation state decreases		(1)

10 (c)(ii)	-Q $=1.5 \times 160=240$ (coulombs) -Faradays $=240 \div 96000=0.0025$ (cq) -Moles Ni $=0.0025 \div 2=0.00125$ (cq) - mass $\mathrm{Ni}=0.00125 \times 59=0.074$ (g) (0.0737 or 0.07375) (cq). (0.0025×59 is $\max 3$) units not required Final answer correct $=4$ marks	Accept 2 or more sig figs (1 sig fig max 3) Accept use of 96500 0.00249 0.001245 0.07337	incorrect use of kg or mg	$\begin{gathered} 1 \\ 1 \\ 1 \\ 1 \\ \text { (4) } \end{gathered}$
				12

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
11 (a)(i)	-appropriate catalyst alumina/ aluminium oxide/ porous pot/ (conc) phosphoric acid / conc sulphuric acid.) - heat / high temperature	ignore references to pressure $150-1000^{\circ} \mathrm{C}$	aluminium	1 1 (2)
11 (a)(ii)	- correct energy level for endothermic (higher) and one from - products marked with correct names/ formulae Mark independently	Ignore any activation energies shown		1 (2)
11 (a)(iii)	- Increased - endothermic (left to right) or description of endothermic / $\Delta \mathrm{H}$ is positive	ignore references to rate	if decreased or stays the same = zero	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$ (2)
11 (b)	- correct structure with minimum 4 carbons -continuation bonds shown (not just dots) (brackets not required)	Ignore " n " subscripts	any structure with $\mathrm{C}=\mathrm{C}$ or based on wrong repeat unit $=0$	1 1 (2)

