
$4335 / 03 \quad 4437 / 08$
LOMdOn HXAMInations TOCNH
Examiner's use only Chemistry - 4335
Paper 3
Science (Double Award) - 4437
Paper 8

Foundation and Higher Tiers

Wednesday 14 May 2008 - Morning
Time: 1 hour 15 minutes

Materials required for examination
Ruler, pencil and calculator
Items included with question papers

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s), the paper reference and your signature.
The paper references are shown above. Write the one for which you have been entered. Check that you have the correct question paper.
Answer ALL the questions in the spaces provided in this question paper.
Show all the steps in any calculations and state the units.
Calculators may be used.

Information for Candidates

The total mark for this paper is 50. The marks for parts of questions are shown in round brackets: e.g. (2).

There are 16 pages in this question paper. All blank pages are indicated.

Advice to Candidates

Write your answers neatly and in good English.

Turn over
(a) Choose from the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}$ and \mathbf{F} to identify the apparatus in the table below.

Name of apparatus	Letter
pipette	
funnel	
conical flask	
burette	

2. (a) The diagrams show the readings on the burette before and after one student added alkali to an acid in a conical flask until neutralisation was complete.

Before

After

The student recorded the readings to the nearest $0.05 \mathrm{~cm}^{3}$.
Use the diagrams to help you complete the table.

Burette reading after adding alkali $\left(\mathrm{cm}^{3}\right)$	
Burette reading before adding alkali $\left(\mathrm{cm}^{3}\right)$	
Volume of alkali added $\left(\mathrm{cm}^{3}\right)$	

3. Malachite chips, containing copper(II) carbonate, react with hydrochloric acid.

$$
\mathrm{CuCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CuCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Some students investigate the effect of changing the concentration of acid on the rate of the reaction. They use this method.

The balance shows the loss in mass as carbon dioxide gas is given off.
After 1 minute the reading on the balance is recorded.
Some students repeat the experiment at the same temperature using acid with the same volume but a different concentration.
(a) Suggest two features of the malachite chips that need to be the same to ensure that the experiment is a fair test.

1 \qquad 2 \qquad

Mass of carbon dioxide given off (g)

(ii) Circle on the graph one result that is anomalous.
(iii) Suggest two errors in the experiment that may have caused this anomalous result.
1 \qquad .
\qquad
2 \qquad

4. Many solids dissolve in water. Some solids are more soluble than others.

The solubility of a solid is the maximum mass of solid (in g) which will dissolve in 100 g of water at a particular temperature.

When the water contains this maximum mass of solid, the solution is described as a saturated solution.

Here is one way to measure the solubility of a solid in water:

- make a saturated solution of the solid at a chosen temperature
- weigh an empty evaporating basin
- add some saturated solution to the evaporating basin and reweigh
- heat the evaporating basin to remove the water
- weigh the evaporating basin and remaining solid.

The diagrams show the apparatus used.

10
(a) (i) In an experiment to measure the solubility of potassium nitrate, the water in the beaker is heated and its temperature measured.

Write down the temperature shown.
Temperature ${ }^{\circ} \mathrm{C}$
(ii) The table shows the results of this experiment.

Mass of evaporating basin empty (g)	98.5
Mass of evaporating basin + saturated solution (g)	125.8
Mass of evaporating basin + solid (g)	109.0

Use these results to calculate
the mass of solid obtained
\qquad
the mass of water removed.
\qquad
(iii) The solubility is calculated using the formula:

$$
\text { solubility }=\frac{100 \times \text { mass of solid obtained }}{\text { mass of water removed }}
$$

Calculate the solubility using this formula.
\qquad grams per 100 g water

The results of a set of experiments using potassium nitrate are shown in the table.

Temperature $\left({ }^{\circ} \mathbf{C}\right.$)	20	30	40	60	70	80
Solubility of potassium nitrate (grams per 100 g water)	32	46	64	104	132	170

(i) Plot these results on the grid above and draw the line of best fit.
(ii) At what temperature do potassium bromide and potassium nitrate have the same solubility?

5. Damp litmus paper is used to test for some gases.

Gas	Damp blue litmus paper	Damp red litmus paper
ammonia	stays blue	turns blue
carbon dioxide	turns red	stays red
chlorine	turns white	turns white
hydrogen	stays blue	stays red
sulphur dioxide	turns red	stays red

A student is given five gas jars, labelled $\mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}$ and \mathbf{T}, each containing one of the gases in the table above. Each gas was tested with damp litmus paper.

The student was told to use the information in the table above to write a conclusion The results and conclusions are shown below.

Gas	Result	Conclusion
\mathbf{P}	blue litmus turns red red litmus stays red	P must be carbon dioxide
\mathbf{Q}	blue litmus turns white	Q has to be chlorine
\mathbf{R}	blue litmus turns red red litmus stays red	R is sulphur dioxide
\mathbf{S}	blue litmus stays blue red litmus turns blue	S can only be ammonia
\mathbf{T}	blue litmus stays blue red litmus stays red	T must be hydrogen

(a) Identify two gases for which the conclusions are definitely correct.
\qquad
(b) Identify two gases for which the conclusions are possibly correct.
\qquad
\qquad

PR: 50 MARKS
TOTAL FOR PAPER: 50 MARKS

END

