CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper		
	IGCSE – October/November 2013	0620	31		
1 (a) uranium	uranium / plutonium / thorium				
(b) graphite	graphite / carbon				
	platinum / titanium / mercury / gold NOT: carbon / graphite				
(d) helium			[1]		
(e) nitrogen	e) nitrogen / phosphorus				
(f) argon ACCEP1	Γ: any ion 2 + 8 + 8 e.g. K ⁺ etc.		[1]		
(g) tellurium ACCEPT	Γ: correct symbol		[1] [Total: 7]		
iron is ha iron has ACCEPT iron has iron has iron has NOTE : h NOT : ap	 Any three of: iron is harder iron has higher density ACCEPT: heavier or potassium lighter iron has higher mp or bp iron has higher tensile strength or stronger iron has magnetic properties NOTE: has to be comparison, e.g. iron is hard (0) but iron is harder (1) NOT: appearance e.g. shiny ACCEPT: comparative statements relating to potassium 				
(b) potassiun zinc copper	m hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5]		
			[Total: 8]		

Page 3			3	Mark Scheme	Syllabus	Paper
				IGCSE – October/November 2013	0620	31
3	(a)) (i) fractional distillation (liquid) air				[1] [1]
		(ii)	crac of all to giv		[1] [1] [1]	
			nam	electrolysis (1) ed electrolyte (1) ogen at cathode (1)		
			reac heat	from methane (1) t water / steam (1) catalyst (1) ACCEPT: water with methane or electrolysis		
			Only			
	(b)	(i)		pair with both graphs correct is C E: mark (b)(ii) independent of (b)(i)		[1]
		(ii)	this i	pressure favours side with lower volume / fewer mo is RHS / product / ammonia H ₃ / yield increases as pressure increases	bles	[1] [1] [1]
			exot %N⊦	orward reaction is exothermic hermic reactions favoured by low temperatures H ₃ / yield decreases as temperature increases CEPT: reverse arguments		[1] [1] [1]
		(iii)	incre ACC OR:	eact	[1] [1]	
				[Total: 14]		
4	(a)	(i)		ss at t =0) – (mass at t = 5) E: must have mass at t = 5 not final mass		[1]
		(ii)	slow	est at origin ing down between origin and flat section gradient = re gradrient = 0	0	
			thre	e of above in approximately the correct positions		[2]
		(iii)	2 co	rrect comments about gradient = [2] rrect comments about gradient = [1] rrect comment about gradient = [0]		[2]
	(b)			rigin and smaller gradient al mass just approximate rather than exact		[1] [1]

	Page 4		ļ	Mark Scheme	Syllabus	Paper
				IGCSE – October/November 2013	0620	31
((c)	(i)	[1] [1]			
		(ii)	energy to react	[1] [1]		
((d)	nur con ma: ma: ma:		[1] [1] [1] [1] [Total: 15]		
5 ((a)	(i)		e same molecular formula / both are C₅H₁₂ have different structural formulae / different structu	res	[1] [1]
		(ii)	CH₃·	-CH ₂ -CH=CH-CH ₃ / any other correct isomer		[1]
((b)	(i)		-(Br)-CH ₂ Br T: C ₂ H ₄ Br ₂		[1]
				omoethane E: numbers not required but if given must be 1, 2		[1]
		(ii)		-CH ₂ -CH ₃ Г: C ₃ H ₈		[1]
	prop		prop	ane		[1]
	(iii) CH ₃ -CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ butanol numbers not required but if given must be correct and match formula				[1] [1]	
((c)	(i)	-	-CH=CH-CH ₂ -CH ₃ -CH=CH-CH ₃		[1] [1]
		(ii)	colo	/ purple urless T: clear		[1] [1]
((d)	[1] [1] [1] [Total:16]				

Page 5			Mark Scheme Syllabus			Paper		
			IGCSE – October/November 2013 0620			31		
6	(a) (an op	d (negative) ele	attract ONLY [1]		[1] [1]		
	(i	Ń	DT: atoms / pro	ers of lead ions / cations / positive ions tons / nuclei ch other / the bonds are non-directiona		[1] [1]		
						[.]		
	(b) (hydrous cobalt CEPT: hydrou:	chloride becomes hydrated s		[1]		
	(i	,	rbon dioxide is dium hydroxide		[1] [1]			
	(ii	Wa	iy two of: iter, calcium ca CCEPT: sodium	rbonate and sodium carbonate bicarbonate		[2]		
		(c) number of moles of CO_2 formed = 2.112 / 44 = 0.048 number of moles of H ₂ O formed = 0.432 / 18 = 0.024						
	x = 2 and $y = 1$ NOT: ecf from this line							
	formula is $2PbCO_3.Pb(OH)_2 / Pb(OH)_2$. $2PbCO_3$							
						[Total:12]		
						[1000.12]		
7	(a) (drogen (atoms) DT: substitute	replaced by (atoms) of a different ele	ment e.g. chlorine	[1]		
	(i	i) lig	ht required			[1]		
	(b) e	(b) exothermic reaction gives out energy						
		endothermic reaction absorbs takes in energy						
						[1]		
	• •	onds C-H	broken	energy +412				
		C <i>l</i> -C <i>l</i> otal er	Arav	+242 +654		[1]		
				004		[']		
		onds C-C <i>l</i>	formed	energy –338				
		H-Cl		-431		F # 7		
		otal er energy	rergy change	–769 –115		[1] [1]		
	n	negativ	ve sign indicates	s exothermic		[1]		
						[Total: 8]		