

MARK SCHEME for the May/June 2013 series

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper			
			IGCSE – May/June 2013	0620	32			
1	(a) (i)	a) (i) named noble gas accept: any noble gas accept: symbol						
	(ii)		/ CO ₂ names not: equations		[1]			
	(b) (i)	at hi	gen and nitrogen (in air) (react) gh temperature e pt: in engines / lightning not: in exhausts		[1] [1]			
	(ii)	foss acce burn	3	[1] [1]				
	(iii)	(iii) any two from: damage buildings / soil acidification / leaching from soil / soil n unavailable / kill microbes / acidify lakes / kill fish / damage trees / r growth / crop loss						
	(c) (i)		<u>gen</u> reacts with copper rm copper oxide (which is black)		[1] [1]			
	(ii)	temp	sure volume at room temperature / gas has peratures / volume of gas depends on temperatur causes expansion (of gases) / ORA					
	(iii)	no o	xygen left or <u>all</u> the oxygen has reacted (with coppe	er)	[1]			
	(iv)	39–4	40 cm ³ note: units required		[1]			
2	(a) B ³ pos	-	charge +		[1] [1]			
		$_{80}^{55}$ Zn			[1]			
		D ¹⁶ ₈ O charge 2–						
	E ⁷ ₃	$_{31}^{0}$ Ga			[1]			
	(b) nur	nber (of p = number of e		[1]			
	number of p > number of e				[1]			
	number of p < number of e							

Page 3			3	Mark Scheme	Syllabus	Paper
				IGCSE – May/June 2013	0620	32
3	(a)	(i)	complete combustion / combustion in excess oxygen			[1]
			of fu	[1]		
			prod	[1]		
		(ii)	living (oxic suga	[1] carbohydrate / [1]		
			prod	[1]		
	(b)	(i) glucose or starch or carbohydrate				[1]
		oxygen				[1]
		(ii) light / sunlight / sun / UV				[1]
			chlo	rophyll accept: chloroplast		[1]
4	(a) (i) first reaction volume / mole			reaction me / moles / molecules of reactants and products a	re different	[1]
			second reaction volume / moles / molecules of reactants and products are the			[1]
		(ii) first reaction (forward) reaction is endothermic second reaction (forward) reaction is exothermic				[1] [1]
	(b)	(i)	C ₈ H∕	$_{18} \rightarrow 2C_4H_8 + H_2$		[1]
	(ii)		2H⁺	+ 2e \rightarrow H ₂		[2]
			acce	$H_3O^+ + 2e \rightarrow H_2 + 2H_2O$ ept: -2e on right hand side accept: e ⁻ e: not balanced = 1		
		(iii)	con bact	rine / Cl ₂ / d: water treatment / solvents / plastics / PVC / t eria / sterilising water / chlorination <u>of water</u> / icides / insecticides / germicides / pharmaceuticals		
			sodi	um hydroxide/NaOH		[1]
				d: making soap / degreasing / making paper / deter ring drains / alumina from bauxite / oven cleaner / b	-	/ paint stripper / [1]

	Page 4			Mark Scheme	Syllabus	Paper		
				IGCSE – May/June 2013	0620	32		
5	(a)	(i) does not decay or non-biodegradable or flexible or or easily moulded or low density / light / lightweight or waterproof / insolut does not corrode or durable						
		(ii)	chloi hydr	two from: rine ogen chloride on monoxide		[2]		
	(b)	 (b) (i) CH₃—CH = CH₂ note: can be fully or semi-displayed, C = C must be shown 				[1]		
				ect repeat unit (C ₆ H ₅)–CH ₂ –		[1]		
			conti	nuation shown		[1]		
	(c)	(c) glucose two products (polymer and water) / condensation (polymerisation molecules removed						
	phenylethene one product (polymer) / addition (polymerisation)							
6	 (i) ions cannot move / no free ions in solid state ions can move / free ions in liquid state note: ions can <u>only</u> move in liquid state = 2 			[1] [1]				
		(ii) reduce melting point / reduce energy costs / better conductor when diss				olved in cryolite [1]		
				s in oxygen / reacts with oxygen / oxidised by oxyg on monoxide	jen / forms carbo	n dioxide / forms [1]		
	((iv) high melting point / inert / unreactive				[1]		
	(b)	prot	tective	e / unreactive / resists / prevents corrosion / non-po	orous (layer)	[1]		
		of (a	alumi	nium) oxide		[1]		
	(c)	(i)		l conductor (of electricity) density / light / lightweight		[1] [1]		
		(ii)		core (increased) strength / prevent sagging / to inc ration of pylons / support	crease	[1]		

Page 5		5	Mark Scheme	Syllabus	Paper	
	V		IGCSE – May/June 2013	0620	32	
7	(a) (i)	C ₂ H ₂ note	COOCH ₂ CH ₃ / CH ₃ CO ₂ CH ₂ CH ₃ / CH ₃ COOC ₂ H ₅ / C 5OOCCH ₃ / CH ₃ CH ₂ OOCCH ₃ not: –OCO– linkage i: formulae can be displayed or semi-displayed i: penalise sticks (i.e. any missing atoms)	CH ₃ CO ₂ C ₂ H ₅ /	[1]	
	(ii)	buty	I methanoate		[1]	
	(b) (i)	fats	/ vegetable oils / triglycerides / lipids		[1]	
	(ii) two correct ester linkages, e.g. –OOC / –O ₂ C and –COO / –CO ₂				[1]	
			ents of the 'boxes' being C_6H_4 and C_2H_4 or CH_2CH_2 inuation bonds at both ends		[1] [1]	
	(c) (i)		ake colourless / invisible (spots) le / coloured / seen / position made clear / indicate		[1] [1]	
	(ii)		<u>distance travelled by sample</u> = <i>R</i> _f ance travelled by solvent (front)		[1]	
	(iii)		ple 1 $R_{\rm f}$ = 0.20 to 0.24 tartaric (acid) ple 2 $R_{\rm f}$ = 0.44 to 0.48 malic (acid)		[1] [1]	
8	(a) (i)	 (i) (the number of particles which is equal to the number of atoms in) 12 g or or the mass <u>in grams</u> which contains the Avogadro's constant number of p or Avogadro's constant or 6 to 6.023 × 10²³ of atoms / ions / molecu particles or 				
		•	amount of substance which has a mass equal to) it nic mass / relative molecular mass <u>in grams</u>	ts relative formula	mass / relative	
			amount of substance which has a volume equal to)	24 dm³ of a <u>gas</u> a	t RTP [1]	
	 (ii) (Avogadro's constant is the) number of particles / atoms / ions / molecules a substance or the <u>number</u> of carbon atoms in 12g of C(12). or the number of particles / molecules in 24 dm³ of a <u>gas</u> at RTP 				s in one mole of	
		or	6.023×10^{23} (particles / atoms / ions / molecules / e		[1]	
	(b) C⊦	l₄ and	SO ₂		[1]	

 $2/16 = 1/8 \text{ or } 0.125 \text{ moles of } CH_4 \text{ AND } 8/64 = 1/8 \text{ or } 0.125 \text{ moles of } SO_2$ [1]

Page 6	6	Mark Scheme	Syllabus	Paper
		IGCSE – May/June 2013	0620	32
(c) (i)		40 = 0.12 moles of Ca 18 = 0.2 moles of H ₂ O both correct		[1]
(ii)	to re	s in excess (no mark) (because 0.12 moles of Ca eact e is not enough / there are 0.2 moles / 3.6g of H ₂ O	need) 0.24 moles	s / 4.32g of H ₂ O [1] [1]
	Ca 0.1m	is in excess (no mark) (because 0.2 moles / noles/4.0g of Ca e is more than that / there are 0.12 moles / 4.8g of 0	-	will react with) [1] [1]
		s in excess (no mark) because the mole ratio Ca:H h is <u>bigger than</u> the required mole ratio of 1:2 / mas	—	atio 4:3 [1] [1]
		s in excess (no mark) because the mole ratio H_2O : the second state of the second		atio 3:4 [1] [1]
(iii)	0.02	× 40 = 0.8 (g)		[1]