www.xrenepabers.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – October/November 2011	0620	31
1	(a)	(i)	lithiu	m oxide / strontium oxide		[1]
		(ii)	sulfu	ır dioxide / nitrogen dioxide		[1]
	(iii)	alum	ninium oxide		[1]
	(iv)		on monoxide ept: correct formulae		[1]
	` ,	burr nitro read high	ogen ction	sil) fuel containing sulfur / volcanoes dioxide of nitrogen and oxygen peratures / in car engine		[1] [1] [1] [1]
	(c)	(i)		ntium oxide ept: aluminium oxide		[1]
	((ii)	con 6x a	correct formula d: charges on ions nd 2o around oxygen ore: electrons around Li		[1] [1]
2	(a)	(i)	deca	ete gases) from animals saying vegetation / anaerobic decay ept: decomposition of organic material / natural gas		[1] [1]
	((ii)	carb wate	on dioxide er		[1] [1]
		both any plar (bur resp carb	responted to the text of the t	athesis removes carbon dioxide from the atmosphere biration and combustion produce carbon dioxide of the following: notosynthesis changes carbon dioxide into carbohyd of fossil fuels / named fuel / petrol / alkanes on by living organisms to obtain energy from containing compounds that the balance between these processes determined to the containing compounds.	Irates	[1] [1] [2] stage of carbon

			IGCSL - October/Novelliber 2011 0020 31			
3	(a)	(i)	bauxite [7	1]		
		(ii)	better conductor / reduces amount of energy needed / reduces cost / mor	1] e 1]		
		(iii)		1] 1]		
	(b) $Al^{3+} + 3e \rightarrow Al$ $2O^{2-} \rightarrow O_2 + 4e$ note: not balanced = 1 oxygen reacts with carbon (anode) to form carbon dioxide / C + $O_2 \rightarrow CO_2$ note: if mark(s) for an electrode reaction are not awarded then allow aluminium ions a electrons / are reduced oxide ion loses electrons / is oxidised max 4					
	(c)	(i)	protective oxide layer [1]		
		(ii)	aluminium is a good conductor ['strength / prevent sagging / allows greater separation of pylons / core made of	1] 1] of 1]		
4	(a)	con		1] 1]		
	(b)	(i)	reaction 2	1] 1] 1]		
		(ii)	reaction 1	1] 1] 1]		
		(iii)	reaction 3	1] 1] 1]		

IGCSE - October/November 2011

Syllabus

0620

Paper

31

	Page 4	ļ	Mark Scheme: Teachers' version IGCSE – October/November 2011	Syllabus 0620	Paper 31
5	(a) (i)	rate beca reac	[1] [1] [1]		
	(ii)	 (ii) initial rate greater / gradient greater because bigger surface area / more particles of iron exposed or: final mass the same because mass of bromine is the same so the same mass of iron is used 			
	(iii)		ease / decrease / change rate of stirring / not stirred sure new rate / compare results		[1] [1]
	(b) (i)	b) (i) Fe to Fe ²⁺ because oxidation is electron loss / increase in oxidation number			
	(ii)	Fe			[1]
	Fe ²	(c) add sodium hydroxide solution / ammonia(aq) Fe ²⁺ green precipitate Fe ³⁺ brown precipitate			
6	(a) (i)		ect structural formula of ethanoic acid w: –OH not: –COOH		[1]
	(ii)		ect structural formula of ethanol w: –OH		[1]
	(b) (i)	ethy	d ethanoate		[1]
	(ii)	corre	C ₆ H ₄ COOCH ₂ CH ₂ O– ect ester linkage ect repeat units tinuation ept: boxes if it is clear what the box represents		[1] [1] [1]
	(iii)	long land visua dang poise	two from: I time to decay Ifill sites al pollution / litter I time to decay Ifill sites al pollution / litter I to animals		[2]

	Page	5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – October/November 2011	0620	31
(ynthetic – only two monomers rotein – many different monomers r·			[1] [1]
	p n	rotein has 1 C=O and 1N–H ylon has 2 C=O / 2N–H •r:			[1] [1]
	S	ynthet	Inthetic – one monomer is a dicarboxylic acid and the other is a diamine rotein all monomers are amino acids		
7	(a) (i		y Group 1 metal cept: LiOH		[1]
	(ii		$(OH)_2 \rightarrow CuO + H_2O$ te : products only = 1		[2]
	(iii	i) rea	activity of metals / metals have different reactivities		[1]
((b) (i		c oxide, nitrogen dioxide, oxygen te: two correct = 1		[2]
	(ii	,	$NO_3 \rightarrow 2KNO_2 + O_2$ te: unbalanced = 1, correct word equation = 1		[2]
(`´ N	c) calculation: M_r for NaHCO ₃ = 84 g; M_r for Na ₂ O = 62 g; M_r for NaOH = 40 g M_r for Na ₂ CO ₃ = 106 g			
	(i	i) nuı	mber of moles of NaHCO ₃ used = $3.36/84 = 0.04$		[1]
	(ii		esidue is Na_2O , number of moles of $Na_2O = 2.12/62$ 0.034 / 0.03		
			esidue is NaOH, number of moles of NaOH = 2.12/40.053 / 0.05)	
			eside is Na_2CO_3 , number of moles of $Na_2CO_3 = 2.12/4$ te: two correct = 1	106 =0.02 all three co	orrect [2]
	(iii	-	uation 3 le ratio 2:1 agrees with equation		[1] [1]