MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2011	0620	31
1	(a)	F or	в	diffusion / <u>fractional</u> distillation		[1]
	(b)	A		simple distillation		[1]
	(c)	D		chromatography		[1]
	(d)	Е		filtration		[1]
	(e)	С		evaporation		[1]
	(f)	В		fractional distillation		[1]
2	(a)	()	not	osynthesis or a photochemical reaction an example, question requires a process devices which convert light into electricity		[1]
		.,		ept battery generator		[1]
	(b)	()		ect formula d following marks conditional on correct formula		[1]
			lf co corr 6x a do N	valent mark 1 only ect charges nd 2o around anion IOT penalise for incorrect coding ore electrons around potassium		[1] [1]
		(ii)	corre	ect formula		[1]
			con 2 bp	nic mark 1 only d and 2 nbp around selenium and 3 nbp around both chlorine atoms		[1] [1]
			high conc is so in or harc any note com		rganic solvents, o	[2]

© University of Cambridge International Examinations 2011

	Page 3			Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – May/June 2011	0620	31	
	(c)	base not alkali accepts a proton accepts hydrogen ion / H ⁺ only [1] proton and H ⁺ [2]					
3	(a)	any four max 4 carbon forms carbon dioxide / carbon monoxide this is a gas it escapes / blown out / diffuses silicon forms silicon(IV) oxide / silica				[1] [1] [1]	
		/ silicon(IV) oxide present in impure iron silicon(IV) oxide reacts with calcium oxide to form slag or calcium silicate slag removed from surface accept skimmed, syphoned, poured off				[1] [1]	
		accept skinned, syphoned, poured on not tapped accept correct formula or equations not calcium oxide reacts with silicon				max [4]	
	(b)	 (i) any sensible suggestion – harder/stronger/can be tailored for a specific resistant to corrosion not steel does not rust 					
		(ii)		steel – cars or any vehicle/bicycles/white goods/s lings/ships/pipes/machinery etc.	screws or nails/roo	of/bridges/tools/ [1]	
				iless steel – chemical plants/cooking utensils/jew ien sinks/pipes/etc.	ellery/cutlery/surgi	cal equipment/ [1]	
	(c)	(i)	 i) strong attractive forces / strong bonds / bonds hard to break / requires a energy to break bonds not between ions, not between positive and negative ions, not between electrons 		s a lot of [1]		
			between positive ions and (negative) electrons / opposite charges attract		te charges attract	[1]	
		 (ii) because the <u>layers, lattice or rows</u> of <u>ions/cations</u> accept sheets of ions not atoms / molecules / protons / nuclei 				[1]	
			can	move / slip / slide past each other		[1]	
4	(a)	(i)		$S + 3O_2 \rightarrow 2ZnO + 2SO_2$ palanced only [1]		[2]	
		(ii) two reagents from named metal(s) more reactive than zinc/carbon monoxide not hydrogen			tide [2]		
		(iii) they have different boiling points cadmium will distil first then zinc leaving lead/lead distilled last			[1] [1]		

© University of Cambridge International Examinations 2011

Page 4			Mark Scheme: Teachers' version Syllabus		Paper
			IGCSE – May/June 2011	0620	31
(b)	the	n rate	n yield need low temperature would be too slow or uneconomic sion of optimum temperature could score mark 1 and	d 2	[1] [1]
	doe	s not	e of catalyst would increase rate (at same temperatu alter the yield (at that temperature) nic rate at lower temperature, therefore higher yield	ıre)	[1] [1]
	higher pressure which would increase yield / rate yield high enough / high pressure expensive				[1] [1] max [4]
	accept reverse arguments note increase yield ≡ position of equilibrium to right				
5 (a)	(i)	2Li ·	+ 2HI \rightarrow 2LiI + H ₂		[1]
	(ii)	zinc	carbonate + hydriodic acid \rightarrow zinc iodide + carbon	dioxide + water	[1]
	(iii)	MgC	D + 2HI \rightarrow MgI ₂ + H ₂ O		[1]
(b)			1 is redox / Li/2HI reaction ason either oxidation number/state / electron transfe	r	[1] [1]
(c)	with	ı hydr	riodic acid – iodine formed / goes <u>dark brown</u> / grey/	black solid	[1]
	not purp		le vapour not purple/black solution		
	with hyd / brown		robromic acid – bromine formed / goes orange / yel /apour	low / brown / reddi	sh brown / red [1]
	not	e can	accept brown for iodine provided bromine is differe	nt orange/brown e	tc.
(d)	(i)		reaction is exothermic / reaction produces heat/ener ne sodium hydroxide used up/neutralised / reaction h	0,	[1] [1]
	(ii)		ng colder acid / no more heat produced t given in (d)(i) any comments such as "reaction has	s stopped" can gair	[1] n mark
	not for a		/ 1.3 / 1.3333 (mol/dm ³) scores both marks 1.34 correct method – $M_1 V_1$ / moles of NaOH = 0.02 an incorrect answer only [1]		[2]

© University of Cambridge International Examinations 2011

Page 5				Mark Sahama, Taashara' yarajar	Syllahua	Donor
	Page 5)	Mark Scheme: Teachers' version IGCSE – May/June 2011	Syllabus 0620	Paper 31
6	to m bute acc alur		to m bute acce alum	king / heat with catalyst ake butane one reacts with steam/water / hydrated ept heat and catalyst for cracking but if spec ninosilicates / silica / aluminium oxide/alumina / o mium oxide	ified: 450 to 80	[1] [1] [1] 00°C zeolites /
		(ii)	acce	ose / sugar changed to alcohol / ethanol ept an unbalanced equation alysed by) enzymes / yeast		[2] [1]
	(b)	CH		acid -CH ₂ -COOH n atoms omitted from ends of bonds, penalise once		[1] [1]
	(c)	(i)	este	r		[1]
		(ii) (iii)	•	₁₂ O ₂ pre CH₃COOC₄H ₉ ect structural formula of butyl ethanoate showing all	bonds	[1]
7	cond mo metal B i cond fas more rea metal C i zinc leas		nd mo tal B i nd fas re rea tal C i c leas	is magnesium ost reactive or fastest reaction is aluminium ster reaction after removal of oxide layer / it would active than zinc is zinc it reactive AX [5]	give more hydro	[1] [1] gen / aluminium [1] [1]
	(b)	-		counter different reasoning which is correct, please resium and zinc same <u>volume</u> of hydrogen	award the approp	oriate marks. [1]
		because both have valency of 2 / 1 mole of metal gives 1 mole of hydrogen reacts with 2 moles of acid		1 mole of metal [1]		
		hyd	lroger	olume for aluminium because its valency is 3 / 1 r n / 1 mole of metal reacts with 3 moles of acid		[1]
		lf yo	ou en	counter different reasoning which is correct, please	award the approp	oriate marks.

accept balanced equations accept ionic charges as alternative to valency

© University of Cambridge International Examinations 2011

	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2011	0620	31
8	(a)	accept n accept n accept n	 polymer only product / only one product nonomer has C=C nonomer and polymer have same empirical formula to loss of material in polymerisation one monomer 		[1]
		condens	ation – polymer and water / small molecule formed		[1]
		condenie			[.]
	(b)	-CH ₂ – C			
	(0)	_	nit correct		[1]
		COND c	ontinuation		[1]
	(c)	CH ₂ =CHOOCCH ₃			[1]
	(d)	I) -OC(CH ₂) ₄ CONH(CH ₂) ₆ NH-			
	. ,	COND a	mide correct linkage		[1]
		correct re	epeat units tion		[1] [1]
		not NH ₂ or COOH endings			[']
		-			[Total: 90]
					[Total: 80]

 $\ensuremath{\textcircled{\sc c}}$ University of Cambridge International Examinations 2011