## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

**International General Certificate of Secondary Education** 

## MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

## 0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|   | Page 2 |       |                |             |                |                                                                                        |                      |            | s' versior                        |            | Sylla       |                               | Paper       |
|---|--------|-------|----------------|-------------|----------------|----------------------------------------------------------------------------------------|----------------------|------------|-----------------------------------|------------|-------------|-------------------------------|-------------|
|   |        |       |                |             |                | IGCSE -                                                                                | - Octob              | er/Nove    | mber 2010                         | 0          | 062         | 20                            | 32          |
| 1 | (a)    | Е     |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [1]         |
|   | (b)    | Α     | С              | E           | nee            | ed all thr                                                                             | ee                   |            |                                   |            |             |                               | [1]         |
|   | (c)    | Α     |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [1]         |
|   | (d)    | F     |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [1]         |
|   | (e)    | С     |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [1]         |
|   | (f)    | D     | F              |             | ne             | ed both b                                                                              | out not m            | nore       |                                   |            |             |                               | [1]         |
|   |        |       |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [Total: 6]  |
| 2 | (a)    | (i)   |                |             | oast<br>burr   | / combu                                                                                | stion / hi           | gh temp    | erature                           |            |             |                               | [1]         |
|   |        |       | in ai          | r/o         | oxyg           |                                                                                        | stry MAX             | X [1]      |                                   |            |             |                               | [1]         |
|   |        | (ii)  | OR<br>the      | 2Zn<br>equa | nO ⊣<br>iatior | $\rightarrow$ Zn +<br>$\rightarrow$ C $\rightarrow$ 2<br>$\rightarrow$ must by monoxid | 2Zn + 0<br>alance, i | f not [0]  |                                   |            |             |                               | [1]         |
|   | (      | (iii) | fract<br>disti |             |                |                                                                                        |                      |            |                                   |            |             |                               | [1]<br>[1]  |
|   | (b)    | (i)   | mak            | ing         | allo           | ys / bras                                                                              | s / name             | ed alloy v | vhich cont                        | ains zinc  | ;           |                               | [1]         |
|   |        |       | acce<br>zinc   | ept (       | galva<br>ated  |                                                                                        | one spe<br>roofing   | cific use  | ectroplatin<br>which deps / sinks |            | ı galvanisi | ng                            | [1]         |
|   |        | (ii)  |                |             |                | s / cation<br>atoms                                                                    | ıs                   |            |                                   |            |             |                               | [1]         |
|   |        |       | delo           | cali        | ised           | / free / m                                                                             | nobile or            | sea of e   | electrons                         |            |             |                               | [1]         |
|   |        |       | bone           | d is        | attra          | action be                                                                              | tween (p             | oositive)  | ions and o                        | lelocalise | ed electro  | ns                            | [1]         |
|   |        |       | Note           | e m         |                | oe clear t                                                                             |                      |            |                                   |            |             | le electrons<br>son why it is |             |
|   |        |       |                |             |                |                                                                                        |                      |            |                                   |            |             |                               | [Total: 11] |

|   | Page 3 |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      | Paper             |  |  |  |  |  |  |
|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|
|   |        |                                                                                                                                                                         | IGCSE – October/November 2010 0620                                                                                                                                                                                                                                                                                                                                   | 32                |  |  |  |  |  |  |
| 3 | (a)    | yolume given off (in that 20 s interval)<br>divided by 20<br>accept 48/20 for [2]<br>Answer to 3 (a) may appear twice, both in 3 (a) and 3 (b). Please ignore in 3 (b). |                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |  |  |  |
|   | (b)    | 0.6                                                                                                                                                                     | (cm <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                                                                 | [1]               |  |  |  |  |  |  |
|   | (c)    |                                                                                                                                                                         | ncentration<br>nydrogen peroxide decreases                                                                                                                                                                                                                                                                                                                           | [1]<br>[1]        |  |  |  |  |  |  |
|   |        |                                                                                                                                                                         | hydrogen peroxide used up ONLY [1]<br>t reagent / reactant                                                                                                                                                                                                                                                                                                           |                   |  |  |  |  |  |  |
|   | (d)    | rate<br>cata<br>mor<br><b>not</b>                                                                                                                                       | [1]<br>[1]<br>[1]<br>lyst                                                                                                                                                                                                                                                                                                                                            |                   |  |  |  |  |  |  |
|   |        | OR                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |  |  |  |
|   |        | oxy                                                                                                                                                                     | ume of oxygen the same<br>/gen from hydrogen peroxide (not catalyst)<br>ount / number of moles the same                                                                                                                                                                                                                                                              | [1]<br>[1]<br>[1] |  |  |  |  |  |  |
|   |        | OR                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |  |  |  |
|   |        | amount/mass/volume/number of moles of hydrogen peroxide the same [2]                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                      |                   |  |  |  |  |  |  |
|   |        | read                                                                                                                                                                    | catalyst chemically unchanged ONLY [1] reactants have not changed (only the catalyst) [1] accept catalyst does not react [1]                                                                                                                                                                                                                                         |                   |  |  |  |  |  |  |
|   |        |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                      | [Total: 11]       |  |  |  |  |  |  |
| 4 | (a)    | (i)                                                                                                                                                                     | chromium is harder has higher density has higher melting point / boiling point / fixed points stronger                                                                                                                                                                                                                                                               |                   |  |  |  |  |  |  |
|   |        |                                                                                                                                                                         | any TWO accept sodium comments must be comparison chromium is hard [0]                                                                                                                                                                                                                                                                                               | [2]               |  |  |  |  |  |  |
|   |        | (ii)                                                                                                                                                                    | both chromium and sodium have to be mentioned explicitly or implicitly. sodium is more reactive is <b>acceptable</b> sodium is a reactive metal is <b>not acceptable</b> chromium has more than one oxidation state, sodium has one chromium forms coloured compounds, sodium compounds are white / sodium does not sodium reacts with cold water, chromium does not |                   |  |  |  |  |  |  |
|   |        |                                                                                                                                                                         | chromium forms complex ions, sodium does not accept chromium has catalytic properties, sodium does not any TWO                                                                                                                                                                                                                                                       | [2]               |  |  |  |  |  |  |

| Page 4    | 4                           | Mark Scheme: Teachers' version                                                                                      | Syllabus | Paper       |
|-----------|-----------------------------|---------------------------------------------------------------------------------------------------------------------|----------|-------------|
|           |                             | IGCSE – October/November 2010                                                                                       | 0620     | 32          |
| (b) (i)   | resis<br>hard<br>any        | earance/shiny/more attractive/decoration st corrosion / rusting l surface TWO becomes harder / stronger             |          | [2]         |
| (ii)      | •                           | SO <sub>4</sub> ) <sub>3</sub><br>ore correct charges on ions                                                       |          | [1]         |
| (iii)     | Cr <sup>3+</sup>            | + 3e → Cr<br>to Cr only<br>ore comments about sulfate ion                                                           |          | [2]<br>[1]  |
| (iv)      | oxyg                        | gen / O <sub>2</sub>                                                                                                |          | [1]         |
| (v)       |                             | eplace chromium ions (used to plate steel) romium sulfate used up                                                   |          | [1]         |
|           | / sol                       | per ions replaced from copper anode ution of copper sulfate does not change just that anode is not made of chromium |          | [1]         |
|           |                             |                                                                                                                     |          | [Total: 12] |
| 5 (a) (i) | acce<br>ratio<br><b>not</b> | ains carbon, hydrogen and oxygen ept example 2H:10 contains water ore comments about carbon                         |          | [1]<br>[1]  |
| (ii)      | <u>obta</u>                 | g organism / plants and animals / cells<br><u>in energy</u> from food<br>burn negates energy mark                   |          | [1]<br>[1]  |
| (iii)     | carb                        | ohydrates contain oxygen                                                                                            |          | [1]         |
| (iv)      | as a                        | fertiliser / manure                                                                                                 |          | [1]         |
| (b) (i)   | 40/6                        | m <sup>3</sup> of oxygen therefore 40 cm <sup>3</sup> of methane<br>0 × 100 = 66.7 %<br>ept 66 % and 67 %<br>ecf    |          | [1]<br>[1]  |
| (ii)      |                             | sodium hydroxide(aq) / alkali<br>on dioxide dissolves, leaving methane                                              |          | [1]<br>[1]  |
|           |                             |                                                                                                                     |          | [Total: 10] |

| Page 5                               | wark Scheme, reachers version                                                                                                                                                                    |                                                                                                                                                  | Syllabus            | Paper         |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|
|                                      | IGCSE – October/November 2010                                                                                                                                                                    | IGCSE – October/November 2010                                                                                                                    | 0620                | 32            |
| cons<br>same<br>same<br>phys<br>comr | e general formula secutive members differ by CH <sub>2</sub> e chemical properties e functional group sical properties vary in predictable way / give trend – n mon methods of preparation THREE | e members differ by CH <sub>2</sub><br>nical properties<br>ional group<br>operties vary in predictable way / give trend<br>ethods of preparation | ip increases with r | n etc.<br>[3] |
|                                      | they have the same molecular formula                                                                                                                                                             |                                                                                                                                                  |                     | [1]           |
|                                      | not general formula<br>different structures / structural formulae                                                                                                                                |                                                                                                                                                  |                     | [1]           |
| , ,                                  | CH <sub>3</sub> -CH <sub>2</sub> -CH(OH)-CH <sub>3</sub> / (CH <sub>3</sub> ) <sub>3</sub> C-OH <b>not</b> ether-type structures <b>NOTE</b> butan-2-ol and 2-methylpropan-2-ol acceptable       | er-type structures                                                                                                                               |                     | [1]           |
| (                                    | air/oxygen / (acidified) potassium chromate(VI) /<br>(acidified) potassium manganate(VII)<br>must have oxidation states                                                                          | ed) potassium manganate(VII)                                                                                                                     |                     | [1]           |
| ` (                                  | carboxylic acid / alkanoic acid $CH_3$ - $CH_2$ - $COOH$ / $C_4H_8O_2$ accept $C_4H_7OOH$                                                                                                        | $H_2$ -C $H_2$ -COOH / $C_3H_7$ COOH / $C_4H_8O_2$                                                                                               |                     | [1]<br>[1]    |
| t                                    | measure <u>volume</u> of carbon dioxide<br>time<br><b>accept</b> day / hour for time mark                                                                                                        |                                                                                                                                                  |                     | [1]<br>[1]    |
| <b>(ii)</b> i                        | increase in temperature / more yeast present / yeast n                                                                                                                                           | se in temperature / more yeast present / yea                                                                                                     | ultiplies           | [1]           |
| , , ,                                | glucose used up accept sugar not reagent / reactant                                                                                                                                              | •                                                                                                                                                |                     | [1]           |
|                                      | concentration of ethanol high enough to kill/poison yea                                                                                                                                          | • • • • • • • • • • • • • • • • • • • •                                                                                                          | st / denature enzy  | mes [1]       |

**Syllabus** 

**Paper** 

Page 5

6

[Total: 15]

[1]

/ ethanol would be oxidised / ethanoic acid/ acid formed / lactic acid formed / carbon

(iv) to prevent aerobic respiration

dioxide and water formed

|   | 1 4 | gc c  |                | Mark Contine. Teachers Version                                                                                                     | Oyllabas             | Taper             |
|---|-----|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|
|   |     |       |                | IGCSE – October/November 2010                                                                                                      | 0620                 | 32                |
| 7 | (a) | (i)   | kills          | microbes / bacteria / fungi / micro-organisms etc.                                                                                 |                      | [1]               |
|   |     | (ii)  | as a           | bleach                                                                                                                             |                      | [1]               |
|   |     | (iii) | burn           | / heat sulfur in air / oxygen                                                                                                      |                      | [1]               |
|   | (b) | not   | adiun<br>an in | m oxide / vanadium(V) oxide / vanadium pentoxide<br>ncorrect oxidation state<br>o 450°C                                            |                      | [1]<br>[1]<br>[1] |
|   |     | wat   | [1]            |                                                                                                                                    |                      |                   |
|   | (c) | (i)   | proto          | on donor                                                                                                                           |                      | [1]               |
|   |     | (ii)  | sulfu          | sure pH / use pH paper<br>ric acid has the lower pH<br>ept colours / appropriate numerical values                                  |                      | [1]<br>[1]        |
|   |     |       | OR             |                                                                                                                                    |                      |                   |
|   |     |       |                | sure electrical conductivity<br>ric acid is the better conductor                                                                   |                      | [1]<br>[1]        |
|   |     |       | OR             |                                                                                                                                    |                      |                   |
|   |     |       | etha           | magnesium / named fairly reactive metal<br>nedioic acid gives the slower reaction<br><b>E</b> result must refer to rate not amount |                      | [1]<br>[1]        |
|   |     |       | OR             |                                                                                                                                    |                      |                   |
|   |     |       | etha           | a carbonate<br>nedioic acid gives the slower reaction<br><b>E</b> result must refer to rate not amount                             |                      | [1]<br>[1]        |
|   | (d) | (i)   | how            | many moles of $H_2SO_4$ were added = 0.02 × 0.3                                                                                    | = 0.006              | [1]               |
|   |     | (ii)  | how            | many moles of NaOH were used = 0.04 × 0.2 =                                                                                        | 0.008                | [1]               |
|   |     | (iii) |                | iric acid                                                                                                                          | form (1) and (11)    | [1]               |
|   |     |       | reas           | mark ecf if in accord with 1:2 ratio and with values on 0.006 > 0.008/2 of mark candidate must use 1:2 ratio in answer             | s from (i) and (ii). | [1]               |
|   |     | (iv)  | less           | than 7                                                                                                                             |                      | [1]               |

Syllabus

Paper

Page 6

[Total: 15]