MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31
Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	31

1 (a) (i) same number of protons and electrons
(ii) all have the same number of protons / same proton number / same atomic number
(iii) more electrons than protons
number of protons and electrons not equal ONLY [1]
(iv) same number of protons (and electrons) / same proton number / same atomic number [1] different number of neutrons / different mass number / nucleon number
(b) (i) $2+8+5$
(ii) $3 / 5$
(iii) non-metal because it accepts electrons / needs 3 e to complete outer energy level / because it is in Group V or 5 e in outer shell note need both non-metal and reason for [1]
[Total: 9]

2 (a) (i) harder / stronger / any sensible suggestion which relates to better properties for purpose e.g. stays sharp longer / cuts better / more corrosion resistant
(ii) zinc
(b) (i) lattice
(ii) regular pattern of one type of atom
with different atom interspersed
can show the difference - size, shading, label etc.
(iii) can change its shape by force / plastically deform / can be hammered into sheets / can bend etc.
(iv) particles / ions / atoms / layers
cond can slide past each other
or metallic bond is non-directional
particles can move past each other

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	31

(c) (i) tin(IV) oxide + carbon \rightarrow tin + carbon dioxide
not carbon monoxide as a reductant
accept carbon monoxide as a product
not tin(IV)
accept correct symbol equation
(ii) water
carbon dioxide
(iii) correct labels for
(pure) copper cathode
impure copper anode
electrolyte copper(II) sulfate / any soluble copper(II) salt / Cu^{2+}
if labels on electrodes reversed [0]
(iv) wires / pipes / jewellery / nails / roofing / ammunition / coins / cookware / catalyst / sculpture
[Total: 15]
(i) chemical
(ii) from right to left
not through salt bridge
(iii) $\mathrm{Br}_{2}+2 \mathrm{e} \rightarrow 2 \mathrm{Br}-$
for Br - as product [1]
(iv) reduction because electron gain
/ because oxidation number decreases
need both points
(v) Fe^{3+}
(vi) any correct discussion of the reactivity of the halogens e.g. the more reactive the halogen the higher the voltage not better conductor
[Total: 7]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	31

4 (a) (i) nitrogen $2+5$
(ii) needs three electrons
to complete energy level
(b) (i) expensive metal / iron cheaper / better catalyst
(ii) high pressure favours side with smaller volume / fewer moles
this is right hand side / product / ammonia side
(iii) recycled / sent over catalyst again
accept used again
$\begin{array}{ll}\text { (iv) advantage } & \text { high yield } \\ \text { disadvantage } & \text { slow reaction rate etc }\end{array}$
[Total: 9]

5 (a) (i) many (simple) molecules form one (large) molecule / monomer molecules form one polymer molecule
(ii) addition - polymer is the only product
accept $-\mathrm{nX} \rightarrow \mathrm{Xn}$
condensation polymer and simpler molecules formed
accept $\quad \mathrm{nX} \rightarrow \mathrm{Xn}+\mathrm{nHCl} / \mathrm{H}_{2} \mathrm{O}$
(b) (i) $\mathrm{C}_{12} \mathrm{H}_{26} \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}+2 \mathrm{C}_{2} \mathrm{H}_{4}$
/ any other correct version
(ii) ethane and chlorine give range of products
/ ethene more readily available than ethane
/ waste half chlorine as hydrogen chloride
/ ethene more reactive than ethane
(iii) electrolysis
aqueous sodium chloride
(iv) must have three correct units

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	31

6 (a) (i) does not form compounds / does not accept and does not lose electrons / has full outer shell/has 8 e in outer shell / it is a Noble Gas / it is in Group 0/8
(ii) small number of outer electrons / lose electrons then positive
large number of outer electrons / gain electrons then negative
(iii) any two from nitrogen, oxygen and fluorine
accept symbols / molecular formulae
(b) (i) zinc / aluminium / lead / tin / chromium
(ii) white precipitate
precipitate dissolves / colourless solution forms / forms a clear solution / soluble in excess
(c) (i) LiF
NF_{3}
(ii) LiF has higher mp / bp

LiF is a (crystalline) solid, NF_{3} is probably a gas / a liquid
/ LiF is less volatile
as liquids only LiF conducts
LiF is soluble in water, NF_{3} is not
when both solids LiF is harder
any two
(iii) LiF is an ionic compound
NF_{3} is a covalent/molecular compound
for stating that one is ionic and the other covalent [1] without specifying which is which
[Total: 13]

7 (i) methane / water vapour / oxides of nitrogen / hydrofluorocarbons / perfluorocarbons / ozone
not sulfur dioxide
(ii) living organisms / plants and animals / cells
produce energy (from food / glucose / carbohydrates)
this forms carbon dioxide (could be in an equation)
(iii) when growing the crop removed carbon dioxide from atmosphere
/ crop photosynthesised and used carbon dioxide
combustion returned the carbon dioxide
(iv) increased combustion
of fossil fuels / named fossil fuel
or deforestation
less photosynthesis
not greater population
[Total: 8]
© UCLES 2010

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE - October/November 2010	0620	31

8 (a) filter / centrifuge / decant
(partially) evaporate / heat / boil
allow to crystallise / cool / let crystals form
dry crystals / dry between filter paper / leave in a warm place to dry
"dry" on its own must be a verb
evaporate to dryness only marks 1 and 2
note if discuss residue only mark 1
(b) number of moles of HCl used $=0.04 \times 2=0.08$
number of moles CoCl_{2} formed $=0.04$
number of moles $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ formed $=0.04$
mass of one mole of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=238 \mathrm{~g}$
maximum yield of $\mathrm{CoCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}=9.52 \mathrm{~g}$
accept 9.5 g
mark ecf to moles of HCl
do not mark ecf to integers
to show that cobalt(II) carbonate is in excess
number of moles of HCl used $=0.08$ must use value above ecf
mass of one mole of $\mathrm{CoCO}_{3}=119 \mathrm{~g}$
number of moles of CoCO_{3} in 6.0 g of cobalt(II) carbonate $=6.0 / 119=0.050$
reason why cobalt(II) carbonate is in excess $0.05>0.08 / 2$

