UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Mark Scheme: Teachers' version	Syllabus	Paper			
			IGCSE – October/November 2010	0620	31			
1	(a) (i)	sam	e number of protons and electrons		[1]			
	(ii)	all have the same number of protons / same proton number / same atomic numb						
	(iii)	more electrons than protons number of protons and electrons not equal ONLY [1]						
	(iv)	same number of protons (and electrons) / same proton number / same atomic num different number of neutrons / different mass number / nucleon number						
	(b) (i) 2 + 8 + 5							
	(ii)	3 / 5			[1]			
	(iii)	ii) non-metal because it accepts electrons / needs 3e to complete outer energy level / because it is in Group V or 5e in outer shell note need both non-metal and reason for [1]						
					[Total: 9]			
2	(a) (i)		ler / stronger / any sensible suggestion which relates stays sharp longer / cuts better / more corrosion res		ties for purpose [1]			
	(ii)	zinc			[1]			
	(b) (i)	lattic	ce		[1]			
	(ii)	with	llar pattern of one type of atom different atom interspersed show the difference – size, shading, label etc.		[1] [1]			
	(iii)	(iii) can change its shape by force / plastically deform / can be hammered into shee bend etc.						
	(iv)	cond or m	icles / ions / atoms / layers d can slide past each other netallic bond is non-directional icles can move past each other		[1] [1] [1] [1]			

rage 3		Mark Scheme, reachers version	Syllabus	Paper
		IGCSE – October/November 2010	0620	31
(c) (i)	tin(I) not o acce not t	[1]		
(ii)		er on dioxide		[1] [1]
(iii)	(pure <u>impu</u> elect	ect labels for e) copper cathode <u>ire copper anode</u> trolyte copper(II) sulfate / any soluble copper(II) sal pels on electrodes reversed [0]	t / Cu ²⁺	[1] [1] [1]
(iv)		s / pipes / jewellery / nails / roofing / ammunition oture	n / coins / cookv	vare / catalyst / [1]
				[Total: 15]
3 (i)	cher	nical		[1]
(ii)		right to left through salt bridge		[1]
(iii)		+ 2e → 2Br- sr- as product [1]		[2]
(iv)	/ bed	ction because <u>electron gain</u> cause oxidation number decreases d both points		[1]
(v)	Fe ³⁺			[1]
(vi)	e.g.	correct discussion of the reactivity of the halogens the more reactive the halogen the higher the voltag better conductor	e	[1]
				[Total: 7]

Syllabus

Paper

Page 3

© UCLES 2010

	Page 4		Ma	ark Schem	ne: Teachers	s' version	Syllabus	Paper		
			IG	CSE – Oct	tober/Nover	nber 2010	0620	31		
4	(a)	(i)	nitrogen 2+5				[1]			
		(ii)	needs three electrons to complete energy level						[1] [1]	
	(b)	(i)	expe	ensive met	al / iron ch	eaper / bette	er catalyst		[1]	
		(ii)	_	pressure t is right har	[1] [1]					
		(iii)	-	recycled / sent over catalyst again accept used again						
		(iv) advantage high yield disadvantage slow reaction rate etc						[1] [1]		
									[Total: 9]	
5	(a)	(i)		y (simple) mer molec		s form one	(large) moleci	ule / monomer mo	lecules form one	
		(ii)				only product			[1]	
			accept - nX → Xn condensation polymer and simpler molecules formed accept $nX \rightarrow Xn + nHCl/H_2O$					[1]		
	(b)	(i)		$H_{26} ightarrow C_8 H_1$ other cor	₁₈ + 2C ₂ H ₄ rect version	n			[1]	
		(ii)	/ eth / was	ene more ste half ch	readily ava	range of pro ailable than e ydrogen chlo an ethane	ethane		[1]	
		(iii)		trolysis eous sodiu	ım chloride				[1] [1]	
	CO			d continua					[1] [1]	
	accept -(CH2-CH(C1))n-						[Total: 9]			

-	r age	<u> </u>	ICCSE October/Never		ognabus	1 apei	
			IGCSE – October/Noven	iber 2010	0620	31	
6	(a) (i)	does not form compounds / does not accept and does not lose electrons / has full outer shell/has 8e in outer shell / it is a Noble Gas / it is in Group 0/8 [1]					
	(ii)		per of outer electrons / lose per of outer electrons / gain	-		[1] [1]	
	(iii)	any two from nitrogen, oxygen and fluorine accept symbols / molecular formulae					
	(b) (i)	zinc / alum	zinc / aluminium / lead / tin / chromium				
	(ii)	white precipitate	[1]				
		precipitate / soluble in	dissolves / colourless solut excess	ion forms / forms	a clear solution	[1]	
	(c) (i)	LiF NF ₃				[1] [1]	
		INF3				ניז	
	(ii)	/ LiF is less as liquids of LiF is solu	ystalline) solid, NF ₃ is proba	ably a gas / a liqui	d		
		any two				[2]	
	(iii)	NF ₃ is a co	nic compound valent/molecular compound that one is ionic and the oth		thout specifying w	[1] [1] hich is which	
						[Total: 13]	
7	(i)	methane / ozone not sulfur o	water vapour / oxides of	nitrogen / hydrofli	uorocarbons / pe	rfluorocarbons / [1]	
	(ii)	produce er	nisms / plants and animals / nergy (from food / glucose / carbon dioxide (could be in	carbohydrates)		[1] [1] [1]	
	(iii)	/ crop phot	ing the crop removed carbo osynthesised and used carbo returned the carbon dioxid	bon dioxide	mosphere	[1] [1]	
	(iv)	increased of fossil fue	combustion els / named fossil fuel			[1] [1]	
		or deforest less photos not greate				[1] [1]	

Syllabus

Paper

[Total: 8]

Page 5

8	(a)	filter / centrifuge / decant (partially) evaporate / heat / boil allow to crystallise / cool / let crystals form dry crystals / dry between filter paper / leave in a warm place to dry "dry" on its own must be a verb evaporate to dryness only marks 1 and 2 note if discuss residue only mark 1	[1] [1] [1] [1]
	(b)	number of moles of HC l used = 0.04 × 2 = 0.08 number of moles CoC l_2 formed = 0.04 number of moles CoC l_2 .6H $_2$ O formed = 0.04 mass of one mole of CoC l_2 .6H $_2$ O = 238 g maximum yield of CoC l_2 .6H $_2$ O = 9.52g accept 9.5 g mark ecf to moles of HC l do not mark ecf to integers	
		to show that cobalt(II) carbonate is in excess	
		number of moles of HC l used = 0.08 must use value above ecf mass of one mole of CoCO ₃ = 119g number of moles of CoCO ₃ in 6.0g of cobalt(II) carbonate = 6.0/119 = 0.050 reason why cobalt(II) carbonate is in excess 0.05 > 0.08/2	[1] [1]

Mark Scheme: Teachers' version IGCSE – October/November 2010

Page 6

Syllabus 0620

[Total: 10]

Paper 31