UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 33 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	33		
1	In (a) , (b) and (c) , descriptions of chemical properties need not be detailed. If more than one answer is given in each section, mark the first one and ignore anything subsequent unless it contradicts what they have already written. No marks for reversing physical and chemical properties.							
	(a) properties should focus on a group 1 metal and not just metals in general							
	PHYSICAL soft / can be cut (with a knife) / low density / light / low melting p conductor (heat or electricity) / shiny (when freshly cut) / malleable / ductile / tarn							
	CHEMICAL react with water (not steam) / (very) reactive / forms salts with haloger vigorously with acids (ignore concentration) / forms an alkaline or basic oxide oxidation state or oxidation number or valency of +1 / has one valency or outer shell not forms ionic compounds on its own.							
	(b)	prop	pertie	s should focus on a transition metal				
		PHYSICAL hard / high density / dense / high mp or bp / (good) conductor (heat or electricity strong / malleable / ductile / silver or grey or lustrous or shiny solid						
		com	pour	AL more than one oxidation state or valency (accep eds or ions (not coloured on its own) / forms complementative than group 1				
	(c)			AL colourless <u>gas</u> / yellow <u>gas</u> mic molecules		[1]		
		CHEMICAL most reactive halogen / very reactive / forms ionic fluorides / bond form covalent fluorides / bonds with non-metals / powerful oxidant / gains one stable) / fixed oxidation state or valency of -1 allow decolourised when reacts with alkene) / forms F^- ions / forms acidic ox acid when reacted with hydrogen / hydride is acidic not bleaching agent				e electron (to be		
2	(a)	(i)	_	rmes are proteins / come from living organisms / biol enzymes are living or natural	logical (catalysts)	[1]		
		(ii)		ohydrates have 2H:1O ratio ain elements of water		[1] [1]		
				ain water = [1] ss they state that carbohydrates contain water, this r	response scores	2 or 0		
	(b)	con	d sar	O- linkage ne correct monomer (this mark is lost if 2 different b ntinuation (i.e. bonds at both ends)	oxes are shown)	[1] [1] [1]		
	(c)	(i)	(con	centration or amount or mass etc.) of starch decreas centration etc.) of starch becomes zero / all starch g ur (intensity) indicates how much starch is present (o	one	[1] [1] [1]		
		(ii)		rme <u>denatured / destroyed</u> enzymes killed / don't work / saliva denatured		[1]		

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2010 0620	33	
3	(a) (i)	red brown or orange to colourless not just bromine decolourised			[1]
		yello	ow (not dark) / white solid / precipitate / goes cloudy on to yellow with no mention of solid/precipitate scor		[1]
	(ii)	Br ₂ +	+ Na₂S → 2NaBr + S		[1]
	(iii)	sulfic	for two comments de (ion) / <u>sulfur</u> (ion) loses electrons sodium sulfide		[1]
		bron	nine accepts them		[1]
	(b) (i)		ation redox		[1]
	(ii)	hydr not	ogen / H ₂ H		[1]
	(iii)	iron((II) hydroxide / ferrous hydroxide		[1]
	(iv)	4Fe($(OH)_2 + O_2 + 2H_2O \rightarrow 4Fe(OH)_3$		[1]
	(v)		ation number or state or valency increases / electro gains oxygen	n loss / Fe ²⁺ to Fe ³⁺	[1]
	(vi)	zinc not j zinc zinc zinc zinc zinc elect	ificial protection or zinc is sacrificed / corrodes not iron or zinc corrodes therefore iron do just zinc rusts is oxidised in preference to iron / reacts with oxygen and water in preference to iron / more reactive or electropositive than iron / forms ions more readily than iron or zinc loses electrons move on to iron / is cathode or zinc is anode /	1	nan iron /

[3]

any three

Page 4	Mark Scheme: Teachers' version Syllabus				
	IGCSE – May/June 2010 0620	33			
(a) (i)	ame molecular formula / same number of C and H atoms ifferent structural formula or structure ame compound = [1]	[1			
(ii)	orrect formula of but-2-ene / methylpropene / methyl cyclopropane	[′			
(iii)	romine / bromine water / aqueous bromine rown to colourless not clear tays brown rom ide loses the first mark only	[['			
	PR alkaline potassium manganate(VII) om purple/pink to green/brown tays purple	[: [:			
	R acidic potassium manganate(VII) om purple/pink to colourless not clear tays purple	[: [:			
	high temperature (temperature need not be stated, but if it is stated it is or above)	must be			
zeo	catalyst (need not be named, but if they are named accept any metal oxide or zeolite / aluminosillicates / silicon dioxide) not nickel/platinum				
	(1,2)dibromobutane if numbers given must be correct				
but but	butane butanol accept butan-1-ol or butan-2-ol not but-1-ol / but-1-anol / buthanol				
	a) fractional distillation				
(b) (i)	=O / oxygen(–)oxygen / H–H / hydrogen(–)hydrogen	[
(ii)	o-H / oxygen(–)hydrogen / OH / bond between hydrogen and oxygen	[
(iii)	ndothermic.	Ī			
(c) (i)	o pollution / no CO / no CO ₂ / no oxides of nitrogen / <u>only</u> produces stem no greenhouse gases / no global warming oes not use up fossil fuels / water is not a finite resource / water is a re ource of energy / hydrogen is renewable / available from electrolysis of	newable			
(ii)	btaining hydrogen from water requires fossil fuels / storage probroblems / limited range of vehicles available / gaseous nature mearmall amount of energy per unit volume / methane as a source of stanite / lack of distribution network ot expensive / anything regarding safety / flammability / explosiveness	olems / transpons only produce eam reforming [

Mark Scheme: Teachers' version

Syllabus

Paper

Page 4

	Page 5		Mark Scheme: Teachers' version Syllabus I				
			IGCSE – May/June 2010	0620	33		
6	(a) (i)	Tl_2	5		[1]		
	(ii)	T <i>I</i> C	l_3		[1]		
	` '	filter / centrifuge / decant wash the precipitate					
		dry the solid / heat the solid (in oven) / press between filter paper					
		all three stated but not in correct order = [2] two out of three stated in any order = [1]					
	(c) (i)		er chloride / silver bromide tography / cameras / films / photo chromic lenses / s	sunglasses	[1] [1]		
	(ii)	(ii) increase distance between lamp and paper or put lamp far away / put a screen or translucent or semi-opaque material between them / use a less powerful or low voltage or dim lamp /					
			er the temperature two		[2]		
	(d) (i)	thal	ium sulfate + ammonia + water		[1]		
	(ii)	not	OH + $H_2SO_4 \rightarrow Tl_2SO_4 + 2H_2O$ balanced = [1] orrect formula = [0]		[2]		
	(iii)	gree Fe ²⁻	en <u>precipitate or solid</u> (ignore shades of green but no + + 2OH ⁻ → Fe(OH) ₂ accept multiples	ot bluey green etc.)	[1] [1]		
7			is expensive / difficult to obtain sodium (from sod y / hard to extract sodium / high energy costs in extr		blems getting [1]		
	(b) (i)	stat bett	uce temperature / reduce melting point (to 900/10 ed, but if it is stated it must be within the range er conductivity / solid aluminium oxide does not contain the project of the containing points.	, .			
			ninium oxide is insoluble in water any two		[2]		
	(ii)	204	$^{-} \rightarrow O_2 + 4e^{-}$		[2] or [0]		
	(iii)	they	/ burn (away) / react with oxygen / form carbon dioxi	de	[1]		
	in alı	(c) hydrogen formed / aluminium above hydrogen in reactivity series / h in preference to Al^{3+} / aluminium is more reactive than hydrogen aluminium more reactive than carbon / carbon cannot reduce aluminium		gen e aluminium oxide /	[1]		
	alı	aluminium is higher than carbon in the reactivity series / carbon doesn't <u>reduce</u> aluminium oxide / carbon doesn't <u>displace</u> aluminium comparison is essential for mark					

Page 6				Mark Scheme: Teachers' version	Syllabus	Paper		
				IGCSE – May/June 2010	0620	33		
3 ((a)	(i)		ccept all metals excluding Group I (lithium is acceptable) ot lead accept silver			[1]	
		(ii)		trite / nitrate(III) nitride			[1]	
((b)	(i)	exothermic not reverse reaction is endothermic as the question asks about the forward reaction cond forward reaction favoured by low temperature / reverse reaction favoured by					
			high	temperature and mark only scores if exothermic is correct.	vorce reaction lay	ourou by	[1]	
		(ii)		tion of equilibrium to right / forwards / more products ause this side has smaller volume / fewer moles	s / more N ₂ O ₄ / lig	hter colour	[1] [1]	
	(c)) if the final answer is between 86–89% award all 4 if the final answer is between 66–67% award 3 marks ($M_{\rm r}$ of 32 must have been used) for all other answers marks can be awarded using the mark scheme as below and applying ecf if necessary						
		number of moles of O_2 formed = 0.16/24 = 0.0067/0.00667 or 1/150 number of moles of Pb(NO ₃) ₂ in the sample = 0.0133/0.013 or 1/75 mass of one mole of Pb(NO ₃) ₂ = 331 g mass of lead(II) nitrate in the sample = 4.4(1) g percentage of lead(II) nitrate in sample = 88.3% (allow 88–89)						
		mark ecf in this question but not to simple integers if mass of lead(II) nitrate > 5.00 only marks 1 and 2 available						

If divides by 32 (not 24) only last 3 marks can score consequentially

8