UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2010 question paper for the guidance of teachers

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		_	IGCSE – May/June 2010	0620	31
1	(i)	sulfur	. ,		[1]
	(ii)	iodine			[1]
	(iii)	copper	ignore (II)		[1]
	(iv)	calcium	1		[1]
	(v)		me of a compound correct symbols		[1]
2	(i)		nethane		[1]
		move s accept ignore	siggest molecular mass / biggest mass of one mole slowest / heaviest molecule / highest density atomic mass if correct numerical value given it is the heaviest (gas) / biggest molecule particles or molecules oms	/ its molecules	[1]
	(ii)	carbon not me	dioxide / calcium carbonate		[1]
		water	chloride / brine / seawater		[1] [1]
	(iii)	chlorine			[1]
		cond li	orine water ght / UV / heat / high temperature if numerical value / lead tetraethyl rm	e given about	[1]
	(iv) oxygen and nitrogen (in air)		[1]		
		(react)	m fuel, negates mark 1 at high temperatures / lightning / in engine mbustion or exhaust, negates mark 2		[1]
	(v)	2O ₃ → not bala	$3O_2$ anced = [1]		[2]
3	(a)	(i) bubl	bles / effervescence / hydrogen / gas pushes up / lit	ts metal	[1]
	(s not react with <u>acid</u> / zinc and iron react with <u>acid</u> just unreactive		[1]
	(b)	(i) with	copper / first experiment		[1]
	((ii) copp	per acts as a <u>catalyst</u>		[1]
	(c)		ller gradient rate is slower		[1]
	((ii) sam	e final volume of hydrogen / same level (on graph)		[1]

Mark Scheme: Teachers' version

Syllabus

Paper

Page 2

© UCLES 2010

www.XtremePapers.net

Page 3			Syllabus	Paper
		IGCSE – May/June 2010	0620	31
	incr fast not	perature / heat ease temperature – reaction faster particles have more er / particles collide more frequently / more particles ha more excited ept arguments for a decrease in temperature		
!	grea grea any	vdered ater surface area ater collision rate / more particles exposed (to acid) two concentration / light / catalyst / pressure		[2]
(a)	(i)	ethanol CH ₃ -CH ₂ -OH		[1] [1]
		propanoic acid CH_3 - CH_2 - $COOH$ independent marking, no ecf accept C_2H_5 not – HO		[1] [1]
	(ii)	type of compound – salt / sodium carboxylate / alkanon not soap / sodium stearate etc use – soap / cleaning / detergent	ate	[1] [1]
((iii)	terylene / PET / Dacron / diolen / mylar / crimplene		[1
(b)	(i)	polyamide / amide / peptide / polypeptide		[1
	(ii)	correct amide linkage <u>NHCO then CONH</u> cond to mark 1, 2 monomers (different shading in box cond continuation (to ONE correct linkage))	[1] [1] [1]
		OR nylon 6 only one linkage – NHCO cond only one monomer cond continuation (to correct linkage)		[1] [1] [1]
((iii)	use locating agent measure distance travelled by sample / travelled by sc cond this is $R_{\rm f}$ = 0.5 for mark 3, either mark 1 or mark 2 must be awarded	lvent front	[1] [1] [1]
		accept run a chromatogram of glycine [1] compare with sample same position [1] max [2]		

Mark Scheme: Teachers' version

Syllabus

Paper

Page 3

	Page 4		ļ	Mark Scheme: Teachers' version	Syllabus	Paper
				IGCSE – May/June 2010	0620	31
5	(a)	all a		romolecular / giant covalent / giant atomic toms held in position / in tetrahedral structure / to fo	ur other carbon	[1]
			aton	ns / <u>all</u> strong bonds		[1]
		(ii)		ellery / drilling / cutting / engraving / cutting edges in k first use offered	scalpels	[1]
		(iii)	-	r structure / sheets ecules / ions in layers = [0]		[1]
				rs can slide (over each other)		[1]
		(iv)		cant / pencils / electrodes k first use offered		[1]
	(b)	(i)		etween carbon and oxygens n-bonding pairs on both oxygens		[1] [1]
			con	d correct coding – only scored if marks 1 and 2 awa ore O ₂ in atom	ırded	[1]
		(ii)	2Si a	around each Si around each O t refer to diagram not valencies or electron distribut	tions	[1] [1]
				•		
		(iii)	SiO ₂ (whe	has higher mp or bp is a solid, CO ₂ is a gas (at rtp) en both are solids) then SiO ₂ is harder		
			SiO ₂	higher density insoluble, CO ₂ soluble		[2]
			any	two, comparison needed		
6	(a)		<u>s</u> equ			[1]
		concentrations do not change / macroscopic properties remain constant accept amounts do not change				[1]
	(b)		lother			[1]
		COI	iu iav	oured by high temperatures		[1]
	(c)	(i)		e to left d bigger volume / more moles etc		[1] [1]
				ot insist on "gas"		ניו
		(ii)		yellow solid / more brown liquid pt yellow to brown / less solid more liquid / goes br	own	[1]

Page 5		ge 5	Mark Scheme: Teachers' version	Syllabus	Paper
			IGCSE – May/June 2010	0620	31
•	(a)	a transition element has more than one oxidation state or valency accept different oxidation states			
	(b)		moving oxygen concentration of O ₂ decreases nts the back reaction / equilibrium shifts to right		[1] [1]
	(c)	acce	tion number reduced (from (+) 4 to 0) ot accepts electrons or accepts four electrons nber given must be 4		[1]
	(d)		ensity / lightweight / light ellers / fittings on ships / inert anodes in electrolysis / hip	o renlacements /	[1]
			ouilding / chemical plants / cathodic protection / diving e	•	[1]
	(e)	(i) p	ercentage of oxygen = 31.6%		[1]
		(ii) c	alculate the number of moles of atoms for each elemer	nt	
		n	umber of moles of Ti = 31.6/48 = 0.66		
			umber of moles of O = 31.6/16 = 1.98 accept 2 oth correct for one mark		[1]
		(iii) t	ne simplest whole number ratio for moles of atoms:		
		F 1	e: Ti: O 1 3		[1]
			ormula is FeTiO ₃ accept TiFeO ₃ nust be whole numbers from (iii) or cancelled numbers	from (iii)	[1]

mark **ecf** throughout

7

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
		IGCSE – May/June 2010	0620	31
8	same ch same fur physical common consecu any two mark firs	emical formula emical properties nctional group properties vary in predictable way methods of preparation tive members differ by CH ₂ st two others unless it contradicts a point which has been	n awarded a mark	[2
	(b) (i) 2HC	$COOH + CaCO_3 \rightarrow Ca(HCOO)_2 + CO_2 + H_2O$		[2

not balanced = [1] [2] (ii) zinc + methanoic acid → zinc methanoate + hydrogen [1] for each product

[1] (iii) protected by oxide layer

(c) butanoic acid [1] [1] [1] CH_3 - CH_2 - $COOH / <math>C_4H_8O_2 / C_3H_7COOH / <math>C_4H_7OOH$ C_2H_4O mark ecf to molecular formula