MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2009	0620	32

GENERAL INSTRUCTIONS FOR MARKING

- Error carried forward may be allowed in calculations. This will be discussed in the mark scheme. This is not applied when the candidate has inserted incorrect integers or when the answer is physically impossible.
- COND the award of this/these mark(s) is conditional upon a previous mark being awarded. Example – Is the reaction exothermic or endothermic? Give a reason for your choice. Mark scheme exothermic [1]
 COND a correct reason given [1]. This mark can only be awarded if the candidate has recognised that the reaction is exothermic.
- When the name of a chemical is demanded by the question, a **correct** formula is usually acceptable. When the formula is asked for, the name is not acceptable.
- When a word equation is required a **correct** symbol equation is usually acceptable. If an equation is requested then a word equation is not usually acceptable.
- An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.
- In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.
 (.....) is used to denote material that is not specifically required.
- **OR** designates alternative and independent ways of gaining the marks for the question. **or** indicates different ways of gaining the same mark.
- Unusual responses which include correct Chemistry which answer the question should always be rewarded even if they are not mentioned in the marking scheme.

© UCLES 2009

Page 3				Mark Scheme: Teachers' version Syllabus		Paper
				IGCSE – October/November 2009	0620	32
1	(a)	(i)	Acc	n or krypton or helium ept xenon and radon even though percentages are ve ⁻ hydrogen	ry small	[1]
		(ii)	wate	er and carbon dioxide		[2]
	(b)	(i)		on monoxide or lead compounds or CFCs or methane nburnt hydrocarbons or ozone	e or particulates	[1]
		(ii)		a fossil fuel contains sulfur		[1] [1]
		(iii)		gh temperature or inside engine gen and oxygen (from the air) react		[1] [1]
	(c)		id air tiona	I distillation		[1] [1] [Total: 10]
2	(a)	рН exa	< 7 Imple			[1] [1]
			mple	photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1] [1]
		exa the	two n	H ₂ O, CO, NO narks are not linked, mark each independently photeric oxides Be, A <i>l</i> , Zn, Pb, Sn etc.		[1] [1]
	(b)	(i)	shov	vs both basic and acidic properties		[1]
		(ii)		ic reacts with sodium hydroxide only hoteric reacts with both reagents		[1] [1]
			OR	only amphoteric oxide reacts with hydrochloric acid		[2]
						[Total: 9]
3	(a)	(i)		/roast/burn <u>in air</u> d both points for mark		[1]
		(ii)	or 22	+ C → Zn + CO ZnO + C → 2Zn + CO ₂ alanced ONLY [1]		[2]

Page 4		4	Mark Scheme: Teachers' version	Syllabus	Paper	
	-		IGCSE – October/November 2009	0620	32	
(k	 b) zinc is more reactive it loses electrons and forms ions in preference to iron zinc corrodes not iron NOT zinc rusts 				[1] [1] [1]	
	OR zinc loses electrons and forms ions the electrons move on to the iron the iron cannot be oxidised or it cannot rust or it cannot lose electrons CREDIT correct Chemistry that includes the above ideas					
(0	c) (i)		atoms change into ions, (the zinc dissolves) per(II) ions change into atoms, (becomes plated with c	opper)	[1] [1]	
	(ii)	ions elec	trons		[1] [1]	
					[Total: 10]	
4 (a	dif or	differe	<i>M</i> _r or ozone molecules heavier than oxygen molecules ent densities or oxygen molecules move faster than oz gen is lighter or ozone heavier		[1] [1]	
			ional distillation e different boiling points		[1] [1]	
(k	o) (i)		rown (solution)		[1] [1]	
	(ii)	I_ lo	ses electrons (it is oxidised)		[1]	
	(iii)		are accepted by ozone zone is an electron acceptor		[1]	
(c	c) (i)	carb sulfu all th	on dioxide ur dioxide		[2]	
	(ii)	CON	ect structural skeleton ID 4bp around both carbon atoms and 2nbp around sulfur atom		[1] [1] [1]	
					[Total: 11]	

Page 5		•	Mark Scheme: Teachers' version	Syllabus	Paper	
				IGCSE – October/November 2009	0620	32
5	(a)	(i)	high Acc it inc	•		[3]
		(ii)	diag eithe "tetra	ram 1 four silicons around one carbon ram 2 four carbons around one silicon er diagram looks or stated to be tetrahedral ahedral" scores mark even if diagram does not look tet pendent marking of three points	rahedral	[1] [1] [1]
	(b)	ead	h ger	to include manium atom bonded 4 oxygen atoms /gen to 2 germanium atoms		[1] [1]
	(c)	(i)	struc	ctural formula of Ge_3H_8 all bonds shown		[1]
		(ii)	gern wate	nanium oxide er		[1] [1]
						[Total: 11]
6	(a)	(i)		or Texas or Louisiana, Japan anoes, natural gas, petroleum		[1]
		(ii)	or m	ch for wood pulp/cloth/straw or preserve food or sterili naking wine or fumigant or refrigerant ept making paper	sing	[1]
		(iii)	or V ₂	adium(V) oxide or vanadium oxide or vanadium pentox $_2O_5$ oxidation state not essential but if given has to be (V)	ide	[1]
		(iv)	rate	too slow or rate not economic		[1]
		(v)	reac	tion too violent or forms a mist		[1]
	(b)	(i)		water to yellow powder or anhydrous salt ould go green		[1] [1]
		(ii)		nge from purple or pink blourless NOT clear		[1] [1]
		(iii)	reac	ts with <u>oxygen</u> in air		[1]

number of moles of Fe ₂ O ₃ formed = 0.04 mass of one mole of Fe ₂ O ₃ = 160 g mass of iron(III) oxide formed = 0.04 × 160 = 6.4 g number of moles of gases formed = 0.08 × 24 = 1.92 dm ³ If mass of iron(III) oxide greater than 12 g, then only marks 1 and 2 available Apply ecf to number of moles of FeSO ₄ * when calculating volume of sulfur trioxide. Do not apply ecf to integers [Total: 10 (a) (i) heat catalyst (ii) equation that gives: alkene + alkane or alkene + alkene + hydrogen a correct and balanced equation for the cracking of decane, C ₁₀ H ₂₂ but not but-1-ene (iii) water or steam (b) (i) C ₄ H ₅ OH + 6O ₂ \rightarrow 4CO ₂ + 5H ₂ O If only error is balancing the oxygen atoms [1] (ii) butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1] (c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₆ O [0] (ii) to conserve petroleum or reduce greenhouse effect (c) have same boiling point [1]	Page 6		;	Mark Scheme: Teachers' version	Syllabus	Paper
number of moles of Fe ₂ O ₃ formed = 0.04 mass of one mole of Fe ₂ O ₃ = 160 g mass of iron(111) oxide formed = 0.04 × 160 = 6.4 g number of moles of gases formed = 0.08 × 24 = 1.92 dm ³ If mass of iron(111) oxide greater than 12 g, then only marks 1 and 2 available Apply ecf to number of moles of FeSO ₄ * when calculating volume of sulfur trioxide. Do not apply ecf to integers [Total: 10 (a) (i) heat catalyst (ii) equation that gives: alkene + alkane or alkene + alkene + hydrogen a correct and balanced equation for the cracking of decane, C ₁₀ H ₂₂ but not but-1-ene (iii) water or steam (b) (i) C ₄ H ₅ OH + 6O ₂ \rightarrow 4CO ₂ + 5H ₂ O If only error is balancing the oxygen atoms [1] (ii) butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1] (c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₆ O [0] (ii) to conserve petroleum or reduce greenhouse effect (c) have same boiling point [1]				IGCSE – October/November 2009	0620	32
Apply ecf to number of moles of FeSO₄* when calculating volume of sulfur trioxide. Do not apply ecf to integers [Total: 14] (a) (i) heat catalyst [' (ii) equation that gives: alkene + alkane or alkene + alkene + hydrogen a correct and balanced equation for the cracking of decane, C ₁₀ H ₂₂ but not but-1-ene [' (iii) water or steam [' (b) (i) C₄H₀OH + 6O₂ → 4CO₂ + 5H₂O If only error is balancing the oxygen atoms [1] [' (ii) butanol + propanoic acid → butyl propanoate + water correct products or reactants ONLY [1] [' (c) (i) correct structural formulae [1] each penalise once for CH₃ type diagrams For C₃H₀O [0] [' (ii) to conserve petroleum or reduce greenhouse effect [' (d) have same boiling point ['	(c)	nur ma ma nur	nber of o ss of o ss of i nber o	of moles of Fe_2O_3 formed = 0.04 one mole of Fe_2O_3 = 160 g iron(III) oxide formed = 0.04 × 160 = 6.4 g of moles of gases formed = 0.08		[1] [1] [1] [1] [1] [1]
Do not apply ecf to integers [Total: 10 (a) (i) heat catalyst (ii) equation that gives: alkene + alkane or alkene + alkene + hydrogen a correct and balanced equation for the cracking of decane, $C_{10}H_{22}$ but not but-1-ene (iii) water or steam (b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ If only error is balancing the oxygen atoms [1] (i) butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1] (c) (i) correct structural formulae [1] each penalise once for CH_3 type diagrams For $C_3H_9O[0]$ (ii) to conserve petroleum or reduce greenhouse effect (d) have same boiling point [2]		lf m	nass c	of iron(III) oxide greater than 12 g, then only marks 1 a	nd 2 available	
(a) (i) heat catalyst[1](ii) equation that gives: alkene + alkane or alkene + alkene + hydrogen a correct and balanced equation for the cracking of decane, $C_{10}H_{22}$ but not but-1-ene(iii) water or steam[2](b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ If only error is balancing the oxygen atoms [1][2](ii) butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1][2](c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₈ O [0][2](ii) to conserve petroleum or reduce greenhouse effect[2](d) have same boiling point[2]					me of sulfur triox	ide.
(ii)equation that gives: alkene + alkane or alkene + alkene + hydrogen[1]a correct and balanced equation for the cracking of decane, $C_{10}H_{22}$ but not but-1-ene[2](iii)water or steam[2](b)(i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O_{1}$ If only error is balancing the oxygen atoms [1][2](ii)butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1][2](c)(i)correct structural formulae [1] each penalise once for CH_3 type diagrams For C_3H_8O [0][2](ii)to conserve petroleum or reduce greenhouse effect[2](d)have same boiling point[2]						[Total: 16]
alkene + alkane or alkene + alkene + hydrogen['a correct and balanced equation for the cracking of decane, $C_{10}H_{22}$ but not but-1-ene['(iii) water or steam['(b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ [2If only error is balancing the oxygen atoms [1]['(ii) butanol + propanoic acid \rightarrow butyl propanoate + water['correct products or reactants ONLY [1]['(c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₈ O [0]['(ii) to conserve petroleum or reduce greenhouse effect['(d) have same boiling point['	(a)	(i)				[1] [1]
(iii) water or steam[7](b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ If only error is balancing the oxygen atoms [1][2](ii) butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1][2](c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C_3H_8O [0][2](ii) to conserve petroleum or reduce greenhouse effect[7](d) have same boiling point[7]		(ii)		•		[1]
(b) (i) $C_4H_9OH + 6O_2 \rightarrow 4CO_2 + 5H_2O$ [2If only error is balancing the oxygen atoms [1][1](ii) butanol + propanoic acid \rightarrow butyl propanoate + water[2correct products or reactants ONLY [1][2(c) (i) correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₈ O [0][2(ii) to conserve petroleum or reduce greenhouse effect[7(d) have same boiling point[7			a co	rrect and balanced equation for the cracking of decane,	$C_{10}H_{22}$ but not b	ut-1-ene [1]
If only error is balancing the oxygen atoms [1][i)(ii)butanol + propanoic acid \rightarrow butyl propanoate + water correct products or reactants ONLY [1](c)(i)(c)(i)correct structural formulae [1] each penalise once for CH ₃ type diagrams For C ₃ H ₈ O [0](ii)to conserve petroleum or reduce greenhouse effect(d)have same boiling point		(iii)	wate	er or steam		[1]
 correct products or reactants ONLY [1] (c) (i) correct structural formulae [1] each penalise once for CH₃ type diagrams For C₃H₈O [0] (ii) to conserve petroleum or reduce greenhouse effect [7] (d) have same boiling point [7] 	(b)	(i)				[2]
 (ii) to conserve petroleum or reduce greenhouse effect (d) have same boiling point 		(ii)				[2]
(d) have same boiling point [7	(c)	(i)	pena	alise once for CH ₃ type diagrams		[2]
		(ii)	to co	onserve petroleum or reduce greenhouse effect		[1]
[Total: 13	(d)	hav	ve san	ne boiling point		[1]
-						[Total: 13]