

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
CHEMISTRY	0620/02
Paper 2	May/June 2009
-	 1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the periodic table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of **15** printed pages and **1** blank page.

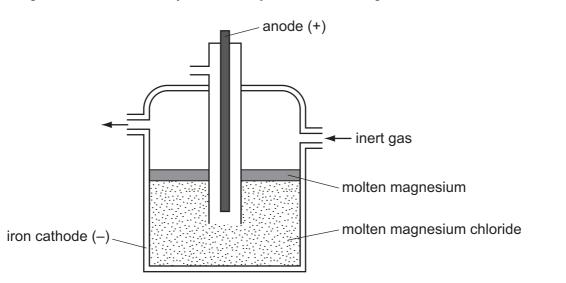
UNIVERSITY of CAMBRIDGE

[Turn over

(a)	Cho	oose from the list of co	mpounds to answer qu	uestions (i) to (v) .		For Examiner's Use
		calcium carbon	ate carbon dio	xide hy	drogen chloride		Use
	İ	iron(III) oxide	ead(II) bromide	methane	sodium hydroxid	e	
	Ead	h compound can be u	sed once, more than c	once or not at a	III.		
	Nar	ne the compound whic	ch				
	(i)	is a transition metal c	ompound,				
						[1]	
	(ii)	produces brown fume	es at the anode when e	electrolysed,			
						[1]	
	(iii)	is used to manufactur	re lime,				
						[1]	
	(iv)	dissolves in water to	form an alkaline solutio	on,			
						[1]	
	(v)	is the main constituer	nt of natural gas.				
						[1]	

1 (a) Choose from the list of compounds to answer questions (i) to (v).

0620/02/M/J/09


(b)	At a	a high temperature iron(III) oxide i	is reduced by	carb	oon.			For Examiner's
		Fe ₂ O ₃ + 3C -	→ 2Fe	+	3CO			Use
	(i)	Explain how the equation shows	that iron(III) c	oxide	e is reduced by	y carbon.		
							[1]	
	(ii)	Complete these sentences abou	t the extraction	n of	iron using woi	ds from the list.		
		bauxite blast	converter		haematite	lime		
		limestone	sand			slag		
		Iron is extracted from			by mixing th	ne ore with		
		coke and	in a			furnace		
		The iron ore is reduced to iron a	nd impurities i	n the	e ore react wit	h calcium oxide		
		to form	·				[4]	

2 The table shows some observations about the reactivity of various metals with dilute hydrochloric acid.

For Examiner's Use

	metal	observations
	calcium	many bubbles produced rapidly with much spitting
	copper	no bubbles formed
	iron	a few bubbles produced very slowly
	magnesium	many bubbles produced rapidly with no spitting
(a)	Put these metals in or	der of their reactivity.
	most reactive	least reactive

- (b) Zinc is between iron and magnesium in its reactivity. Suggest what observations are made about how fast the bubbles are produced when zinc reacts with dilute hydrochloric acid.
 - [1]
- (c) Magnesium is extracted by the electrolysis of molten magnesium chloride.

(i) What information in the diagram suggests that magnesium is less dense than molten magnesium chloride?

[1]

© UCLES 2009

0620/02/M/J/09

	(ii)	Suggest wh its oxide wit	ny magnesium has th carbon.	to be extracted b	y electrolysis ratl	ner than by heat	ting For Examiner's Use
							[1]
	(iii)	Suggest wi magnesium	hy a stream of ir ı.	nert gas is blow	n over the surfa	ace of the mol	lten
							[1]
	(iv)	State the na	ame of a gaseous e	element which is i	nert.		
							[1]
(d)		ome old mag gnesium.	gnesium manufactı	uring plants, coal	gas is blown ove	r the surface of	the
		-	he main substance	s in coal gas.			
		carbor	n monoxide	ethene	hyd	Irogen	
			hydroge	n sulfide	methane		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		
	(i)	Draw the st	ructure of ethene s	howing all atoms	and bonds.		[1]
	(i) (ii)		ructure of ethene s			cific substances	
		Suggest tw				cific substances	
		Suggest tw the list.				cific substances	
		Suggest tw the list. substance				cific substances	
		Suggest tw the list. substance hazard				cific substances	

(e) Carbon monoxide can be removed from coal gas by mixing it with steam and passing the mixture over a catalyst of iron(III) oxide at 400 °C. Examiner's

For

Use

 $\mathsf{CO} \ \ \textbf{+} \ \ \mathsf{H}_2\mathsf{O} \ \ \rightleftharpoons \ \ \mathsf{CO}_2 \ \ \textbf{+} \ \ \mathsf{H}_2$

(i)	Write a word equation for this reaction.	
		[1]
(ii)	What does the symbol \rightleftharpoons mean?	
		[1]
(iii)	Iron(III) oxide reacts with acids to form a solution containing iron(III) ions. Describe a test for aqueous iron(III) ions.	
	test	
	result	
		[2]
	[Total: 1	3]

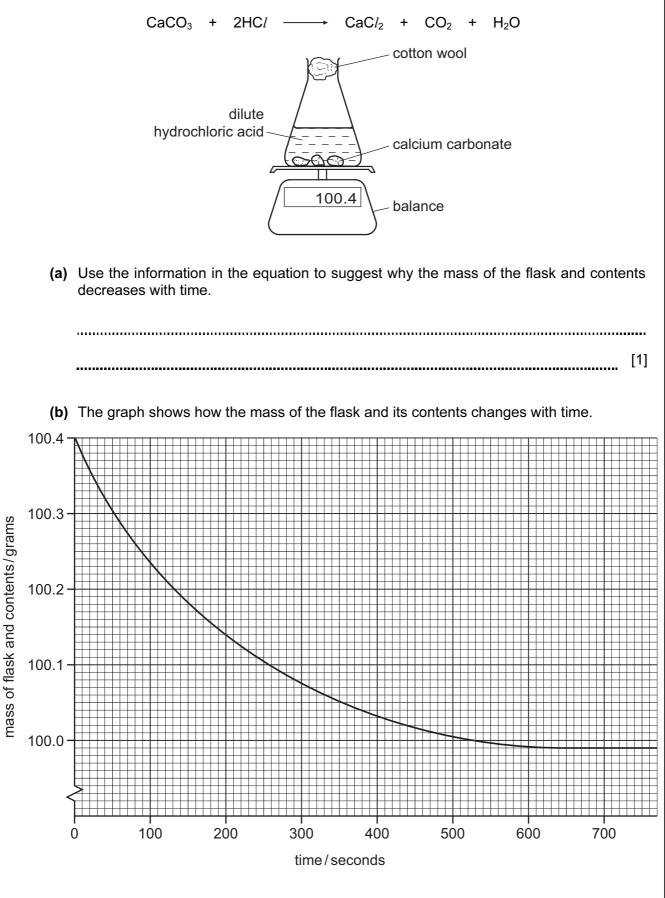
0620/02/M/J/09

	rol, paraffin and							
a)	State the name	e of the process	used to separate th	ese fractions.				
								[1]
b)	Name two othe	er fractions whicl	h are obtained from	petroleum .				
			and					[2]
c)	Give one use f	for the paraffin fr	action.					
								[1]
d)			ed from petroleum a ctures are alkanes?					
	Α	В		с		D		
	н н—с—н !	H C=c	H H / H—C-	—О—Н	н н—с–	H -C-	H -C-	-н
	н	Н	H ú		Ц	Ц	Ц	
	н	н	H Ĥ		Ĥ	H	н Н	[1]
e)	H Use words from ethane	H n the list below to ethene	H Ĥ o complete the follo hydrogen		ə.	H H xyge		[1]
e)		ethene	o complete the follo	owing sentence	ə.			[1]
e)	ethane reac	ethene tive	o complete the follo hydrogen	owing sentence nitrogen	e. o water	xyge	en	
e)	ethane read	ethene stive	o complete the follo hydrogen unreactive	owing sentence nitrogen y	e. o water	xyge but th	en ney ca	
e) f)	ethane read Alkanes such a be burnt in Alkanes are sa	ethene stive	o complete the follo hydrogen unreactive are generall to form carbon div	owing sentence nitrogen y	e. o water	xyge but th	en ney ca	n
	ethane read Alkanes such a be burnt in Alkanes are sa What do you u	ethene stive	o complete the follo hydrogen unreactive are generall to form carbon div	owing sentence nitrogen y oxide and	e. o water	xyge out th	en ney ca	n
	ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	ethene etive	o complete the follo hydrogen unreactive are generall to form carbon die rbons.	owing sentence nitrogen y oxide and	e. o water	xyge	en ey ca	n
	ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated,	ethene etive	o complete the follo hydrogen unreactive are generall to form carbon dia rbons.	owing sentence nitrogen y oxide and	e. o water	xyge	en ey ca	n
	ethane read Alkanes such a be burnt in Alkanes are sa What do you u (i) saturated, (ii) hydrocarba	ethene	o complete the follo hydrogen unreactive are generall to form carbon die rbons.	owing sentence nitrogen y oxide and	e. vater	xyge	•n hey ca	n

0620/02/M/J/09

[Turn over

This question is about some compounds of nitrogen. For Examiner's Use A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. The gas was tested with moist red litmus paper. red litmus paper ammonium sulfate and sodium hydroxide heat gently (a) State the name of the gas released. [1] (b) State the colour change of the litmus paper. [1] (c) Complete the word equation for the reaction of ammonium carbonate with hydrochloric acid.+ → + hydrochloric ammonium carbonate acid [3] . (d) Ammonium salts such as ammonium nitrate, NH₄NO₃ and ammonium chloride NH₄Cl are used as fertilisers. (i) Explain why farmers need to use fertilisers.[1] (ii) Explain why ammonium nitrate is a better fertiliser than ammonium chloride. [1]


4

0620/02/M/J/09

	(iii)	Calculate the relative formula mass of ammonium nitrate.	For Examiner's Use
		[1]	
(e)	Nitro	en ammonium nitrate is heated nitrogen(I) oxide is given off. ogen(I) oxide relights a glowing splint. ne one other gas which relights a glowing splint. [1]	
(f)	Stat	e one harmful effect of nitrogen oxides on the environment.	
		[Total: 10]	

[Turn over

5 A student used the apparatus shown below to investigate the rate of reaction of calcium carbonate with dilute hydrochloric acid.

© UCLES 2009

0620/02/M/J/09

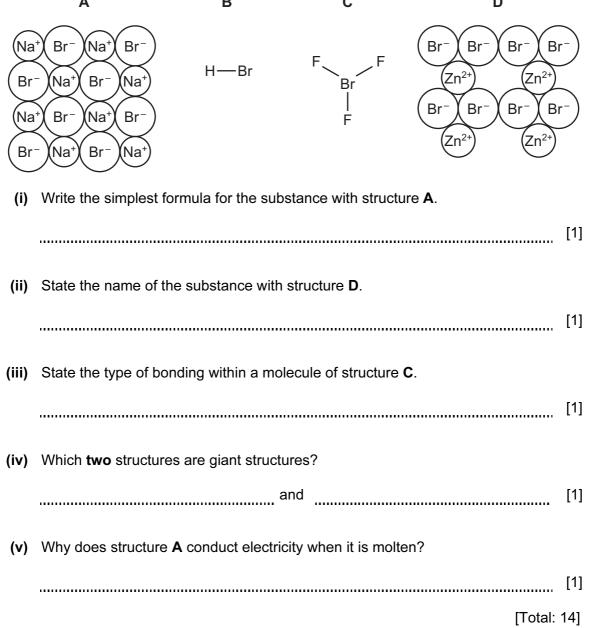
www.Students-Resource.com

For Examiner's Use

(i)	At what time was the reaction just complete?	For Examiner's
	[1]	Use
(ii)	On the graph, mark with an ${\bf X}$ the point where the speed (rate) of reaction was fastest. [1]	
(iii)	The student repeated the experiment but altered the concentration of the hydrochloric acid so that it was half the original value. In both experiments calcium carbonate was in excess and all other conditions were kept the same.	
	On the graph on page 10, draw a curve to show how the mass of the flask and contents changes with time when hydrochloric acid of half the concentration was used. [2]	
(c) Ho	w does the speed (rate) of this reaction change when	
(i)	the temperature is increased, [1]	
(ii)	smaller pieces of calcium carbonate are used? [1]	
(d) Co	mplete the following sentence using words from the list.	
c	combustion expansion large rapid slow small	
In 1	flour mills there is often the risk of an explosion due to the rapid	
of	the very particles which have a very	
	surface area to react. [3]	
(e) Ce	Ils in plants and animals break down glucose to carbon dioxide and water.	
(e) Ce		
(e) Ce (i)	lls in plants and animals break down glucose to carbon dioxide and water.	
	Ils in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen ───→ carbon dioxide + water	
	Ils in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water State the name of this process.	
(i)	Ils in plants and animals break down glucose to carbon dioxide and water. glucose + oxygen → carbon dioxide + water State the name of this process. [1] In this process enzymes act as catalysts.	

0620/02/M/J/09

Bromine is an element in Group VII of the Periodic Table. 6 For Examiner's Use (a) Write the formula for a molecule of bromine. [1] (b) Complete the diagram below to show the arrangement of the molecules in liquid bromine. ^orepresents a bromine molecule [2] (c) A teacher placed a small amount of liquid bromine in the bottom of a sealed gas jar of air. After two minutes brown fumes were seen just above the liquid surface. After one hour the brown colour had spread completely throughout the gas jar. air liquid bromine after 2 minutes after start Use the kinetic particle theory to explain these observations.


0620/02/M/J/09

© UCLES 2009

[3]

(d) Magnesium salts are colourless but Group VII elements are coloured. For An aqueous solution of magnesium bromide reacts with an aqueous solution of Examiner's Use chlorine. magnesium bromide + chlorine ------ magnesium chloride + bromine State the colour change in this reaction. [2] (e) A solution of magnesium bromide will not react with iodine. Explain why there is no reaction. [1] (f) The structures of some compounds containing bromine are shown below. Α В С D

13

0620/02/M/J/09

[Turn over

7	Hyd	drogen chloride can be made by	burning hydrogen in chlorine.		For Examiner's
	(a)	Complete the equation for this	reaction.		Use
		H ₂ +	→ HC	[2]	
	(b)	Draw a dot and cross diagram f Show all the electrons.	for a molecule of hydrogen chlor	ride.	
		use o for an electron from a hyduse x for an electron from a chl			
				[2]	
				[4]	
	(c)	Hydrochloric acid is formed whe Suggest the pH of hydrochloric Put a ring around the correct ar	acid.	ves in water.	
		pH 1 pH7	рН9	рН 13 [1]	
	(d)	pH 1 pH7 Complete the equation for the r		[1]	
	(d)	Complete the equation for the r		1] n zinc.	
		Complete the equation for the r	eaction of hydrochloric acid with id	[1] n zinc. [1]	
		Complete the equation for the r zinc + hydrochloric ac Describe how dry crystals of chloride.	eaction of hydrochloric acid with id	[1] n zinc. [1] from a solution of zinc	
		Complete the equation for the r zinc + hydrochloric act Describe how dry crystals of chloride.	eaction of hydrochloric acid with id	[1] n zinc. [1] from a solution of zinc	
		Complete the equation for the r zinc + hydrochloric act Describe how dry crystals of chloride.	eaction of hydrochloric acid with id	[1] n zinc. [1] from a solution of zinc	
		Complete the equation for the r zinc + hydrochloric act Describe how dry crystals of chloride.	eaction of hydrochloric acid with id →→ zinc chloride + zinc chloride can be obtained	[1] n zinc. [1] from a solution of zinc	
	(e)	Complete the equation for the r zinc + hydrochloric act Describe how dry crystals of chloride. A student electrolysed molten z State the name of the product f	eaction of hydrochloric acid with id →→ zinc chloride + zinc chloride can be obtained	[1] n zinc. [1] from a solution of zinc [2]	
	(e)	Complete the equation for the r zinc + hydrochloric act Describe how dry crystals of chloride. A student electrolysed molten z State the name of the product f	eaction of hydrochloric acid with id →→ zinc chloride + zinc chloride can be obtained cinc chloride. ormed at	[1] n zinc. [1] from a solution of zinc [2] [1]	

0620/02/M/J/09

BLANK PAGE

0620/02/M/J/09

	0	4	He	2 Hellum	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86		175	Lutetium 71		۲	Lawrencium
	II>				19	ш	Fluorine 9	35.5	C1	Chlorine 17	80	Br	Bromine 35	127	Ι	lodine 53		At	Astatine 85		173	Yb Ytterbium 70	2	No	Nobelium
	N				16	0	Oxygen 8	32	S	Sulfur 16	79	Se	Selenium 34	128	Te	Tellurium 52		Ро	Polonium 84		169	Thulium 69	:	Md	Mendelevium
	>				14	z	Nitrogen 7	31	٩.	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83		167	Er Erbium 68	:	Еm	Fermium
	2				12	с	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82		165	Holmium 67	;	Es	Einsteinium
	≡				1	Ш	Boron 5	27	١٧	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	LΙ	Thallium 81		162	Dy Dysprosium 66	;	ç	Californium
												Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80		159	Tb Terbium 65	:		Berkelium
											64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79		157	Gd Gadolinium 64	5		Curium
Group	dn										59	İŻ	Nickel 28	106	Pd	Palladium 46	195	£	Platinum 78		152	Eu Europium 63	:	Am	Americium
Gre					_						59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77		150	Samarium 62		Pu	Plutonium
		-	I	1 1							56	Fe	lron 26	101	Ru	Ruthenium 44	190	os	Osmium 76			Promethium 61	5	ЧN	Neptunium
											55	Mn	Manganese 25		Ъс	Technetium 43	186	Re	Rhenium 75		144	Neodymium 60	238	D	Uranium
											52	ۍ	Chromium 24	96	Мо	Molybdenum 42	184	×	Tungsten 74		141	Pr Praseodymium 59		Ра	Protactinium
											51	>	Vanadium 23	93	qN	Niobium 41	181	Та	Tantalum 73		140	Cerium Cerium	232	Th	Thorium
											48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ηf	Hafnium 72				nic mass	bol	nic) number
											45	Sc	Scandium 21	89	≻	Yttrium 39	139	La	Lanthanum 57 *	227 Actinium 89	series	eries	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=				6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226 Rad 88	*58-71 Lanthanoid series	t 90-103 Actinoid series	a	×	. q
	_				7	:	Lithium	23	Na	Sodium	39	¥	Potassium 19	85	Rb	Rubidium 7	133	cs	Caesium	Fr Francium	-71 L	-103		Key	þ

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2009

0620/02/M/J/09