

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction	
First variant Principal Examiner's Report	
Second variant Principal Examiner's Report	

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

0620 CHEMISTRY

0620/31

Paper 31 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

First variant Mark Scheme

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	31

An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.

1	(a)	bromine	[1]
	(b)	germanium	[1]
	(c)	potassium or calcium	[1]
	(d)	krypton	[1]
	(e)	iron or cobalt	[1]
	(f)	bromine	[1]

(g) vanadium [1]

ACCEPT name or symbol

[Total: 7]

2 (a)

electron	e ⁻ or e	1/1840 or 1/2000 or 0 1/1837 or negligible	- <u>1</u>
proton	p or p⁺ or H⁺	1	+ <u>1</u>
neutron	n	1	0 or neutral

each correct row (1) [3]

- (b) (i) equal numbers of protons and electrons of positive and negative charges or charges cancel/balance [1] or net charge = 0
 - (ii) lose electron(s) [1]
 more protons than electrons [1]
 NOT more + than –
 - (iii) different numbers of neutrons [1] same number of protons **or** same number of electrons [1] for just giving- they are isotopes [1] **ONLY**
 - (iv) an element is known for each proton number accept any sensible idea, for example no gaps between z = 1 and z = 103

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	31

(b) Cu - 2e \rightarrow Cu²⁺ or Cu \rightarrow Cu²⁺ + 2e for having Cu \rightarrow Cu²⁺ [1] ONLY

(c) (i) good conductor [1] malleable or ductile

good conductor of heat high melting point (and

high melting point (and high boiling point) unreactive **or** resists corrosion appearance any **TWO**

any **TWO**do not accept malleable **or** ductile if either is given for wiring

(ii) alloys **or** named alloy **or** pipes **or** ornaments **or** jewellery **or** integrated circuit boards **or** electroplating **or** roofs, etc. [1]

[Total: 10]

- 4 (a) (i) magnesium + sulphuric acid = magnesium sulphate + hydrogen [1]

 ACCEPT hydrogen sulphate
 - (ii) $\text{Li}_2\text{O} + \text{H}_2\text{SO}_4 \rightarrow \text{Li}_2\text{SO}_4 + \text{H}_2\text{O}$ [2] formulae correct but not balanced [1]
 - (iii) $CuO + H_2SO_4 \rightarrow CuSO_4 + H_2O$ [2] OR $CuO + 2HCl \rightarrow CuCl_2 + H_2O$ OR $CuO + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O$ formulae correct but not balanced [1]
 - (iv) sodium carbonate + sulphuric acid → sodium sulphate + carbon dioxide + water [1]
 - (b) it accepts a proton [2] it accepts a hydrogen ion [1] ONLY
 - (c) sulphuric acid is completely ionised [1]
 or few molecules and many ions
 ethanoic acid is partially ionised [1]
 or many molecules and few ions

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	31
	icoc inajionio 2000		

5	(a)	(i)	(concentration) of reactants/CO and Cl_2 increases (concentration) of product decreases/COC l_2)	[1] [1]
		(ii)	(decrease in pressure favours side) with more molecules or moles or side with bigger volume (of gas) NB [2] or [0]	[2]
	(b)	CO	vard reaction is exothermic ND because it is favoured by low temperatures or cool CEPT argument re back reaction	[1] [1]
	(c)		lrogen chloride or hydrochloric acid bon dioxide or carbonic acid or hydrogen carbonate	[1] [1]
	(d)	4e 8e 8e if a	around both chlorine atoms between carbon and oxygen atoms around carbon atom around oxygen bond contains a line with no electrons, no marks for atoms joined by that line ore keying	[1] [1] [1]
				[Total: 12]
6	(a)	(i)	(fine powder) <u>large surface area</u> <u>high/faster/collision rate/more collisions/fast collisions</u> (between solid and oxygen in air)	[1] [1]
		(ii)	carbohydrate + oxygen → carbon dioxide + water ACCEPT flour	[1]
	(b)	mo	e depends on light re light more silver or blacker ker card less light	[3]
	(c)	(i)	biological catalyst accept protein catalyst	[1]
		(ii)	production of energy (from food) by living "things" or by cells, etc.	[1] [1]
		(iii)	"kill" yeast or denature enzymes (due to increase in temperature)	[1]
		(iv)	all <u>glucose</u> used up yeast "killed" or denatured or damaged by <u>ethanol/alcohol</u>	[1] [1]
		(v)	filter or centrifuge fractional distillation	[1] [1]
				[Total: 14]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	31
	•		

7	(a)	(pa allo dry MU	eat experiment without indicator or use carbon to remove indicator artially) evaporate or boil or heat ow to cool or crystallise or crystals crystals IST be in correct order evaporate to dryness, marks one and two ONLY	[1] [1] [1] [1]
	(b)	nur	mber of moles of NaOH used = 0.025 x 2.24 = 0.056	[1]
		ma	ximum number of moles of Na ₂ SO ₄ .10H ₂ O that could be formed = 0.028	[1]
		ma	ss of one mole of Na ₂ SO ₄ .10H ₂ O = 322g	
		ma	ximum yield of sodium sulphate – 10 - water = 9.02g	[1]
		ma if e	rcentage yield = 42.8% rk ecf but NOT to simple integers cf marking, mark to at least one place of decimals ercentage > 100% then 3/4 maximum	[1]
				[Total: 8]
8	(a)		rning wood produces carbon dioxide s photosynthesis or trees take up carbon dioxide	[1] [1]
	(b)	(i)	fats or lipids	[1]
		(ii)	-O- linkage, no other atoms in linkage COND same monomer COND continuation bonds at each end -A-	[1] [1] [1]
		(iii)	same linkage or amide linkage or peptide or -CONH-	[1]
			differences synthetic polyamide usually two monomers protein many monomers protein monomers are amino acids or proteins bydrolyse to amino acids or	or a protein

protein monomers are amino acids ${f or}$ proteins hydrolyse to amino acids ${f or}$ a protein monomer has one – NH $_2$ and one –COOH group

synthetic polyamide each monomer has $2 - NH_2$ or 2COOH groups or monomers are dioic acid and diamine

accept diagrams **or** comments that are equivalent to the above

ANY **TWO** [2]

[Total: 9]

[Total for paper: 80]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

0620 CHEMISTRY

0620/32

Paper 32 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Second variant Mark Scheme

Page 2	ge 2 Mark Scheme		Paper
	IGCSE – May/June 2008	0620	32

An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.

1 (a) bromine [1]

(b) selenium [1]

(c) potassium or calcium [1]

(d) krypton [1]

(e) iron **or** cobalt [1]

(f) potassium or copper [1]

(g) iron [1]

ACCEPT name or symbol

[Total: 7]

2 (a)

electron	e ⁻	1/1840 or 1/2000 or 1/1837 or negligible	-1
proton	р	1	+1
neutron	n	1	0

each correct row (1) [3]

equal numbers of protons and electrons of positive and negative charges **or** charges cancel/balance [1]

or net charge = 0 [1]

(ii) gain electron(s) [1]
more electrons than protons [1]
NOT more – than +

(iii) different number of neutrons [1] same number of protons **or** electrons [1]

(iv) an element is known for each proton number accept any sensible idea, for example – no gaps between z = 1 and z = 103

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	32

3 (a) <u>impure copper</u> [1] (pure) copper [1]

ACCEPT any (soluble) copper salt or Cu²⁺
[1]

if both name and formulae given, both have to be correct

(b) Cu - 2e \rightarrow Cu²⁺ or Cu \rightarrow Cu²⁺ + 2e for having Cu \rightarrow Cu²⁺ [1] ONLY

(c) (i) good conductor [1] malleable or ductile [1]

good conductor of heat

high melting point (and high boiling point)

unreactive **or** resists corrosion

appearance [2] do not accept malleable **or** ductile if either is given for wiring

(ii) alloys **or** named alloy **or** pipes **or** ornaments **or** jewellery **or** integrated circuit boards **or** electroplating **or** roofs, etc. [1]

[Total: 10]

- **4 (a) (i)** magnesium + sulphuric acid → magnesium sulphate + hydrogen [1] accept hydrogen sulphate
 - (ii) $\text{Li}_2\text{O} + \text{H}_2\text{SO}_4 \rightarrow \text{Li}_2\text{SO}_4 + 2\text{H}_2\text{O}$ [2] all formulae correct, not balanced [1]
 - (iii) $CuCO_3 + H_2SO_4 \rightarrow CuSO_4 + H_2O + CO_2$ [2] OR $CuCO_3 + 2HCl \rightarrow CuCl_2 + H_2O + CO_2$ OR $CuCO_3 + 2HNO_3 \rightarrow Cu(NO_3)_2 + H_2O + CO_2$ all formulae correct, not balanced [1]
 - (iv) sodium carbonate + sulphuric acid → sodium sulphate + carbon dioxide + water [1]
 - (b) it accepts a proton it accepts a hydrogen ion [1] ONLY
 - (c) electrical conductivity
 sulphuric acid is a better conductor or ethanoic acid is a poorer conductor
 OR rate of reaction
 a suitable metal or metal carbonate must be named [1]

sulphuric acid reacts faster or ethanoic acid reacts slower [1]

NOTE [1] for method explicitly stated or implied for valid comparison [1]

sulphuric acid is a better conductor [2] sulphuric acid is a good conductor [1]

Accept a correct test for a sulphate with a soluble barium salt

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	32

5 (a) (i) (concentration) of reactants/CO and Cl_2 decreases [1] (concentration) of product/COC12 increases [1] (ii) (an increase in pressure favours the) side with fewer molecules or moles, side with smaller volume (of gas) [2] NB [2] or [0] **(b)** forward reaction is exothermic [1] **COND** because it is favoured by low temperatures or cool [1] **ACCEPT** argument re back reaction (c) hydrogen chloride or hydrochloric acid [1] carbon dioxide or carbonic acid or hydrogen carbonate [1] (d) 8e around both chlorine atoms [1] 4e between the carbon atom and the oxygen atom [1] 8e around carbon [1] 8e around oxygen [1] if a bond contains a line with no electrons, no marks for atoms joined by that line ignore keying [Total: 12] 6 (a) (i) (fine powder) large surface area [1] high/faster/collision rate/more collisions/fast collisions (between solid and oxygen in air) [1] (ii) carbohydrate + oxygen → carbon dioxide + water [1] **ACCEPT** flour (b) rate depends on light more light more silver or blacker thicker card less light [3] [1] (c) (i) biological catalyst accept protein catalyst (ii) production of energy (from food) [1] by living "things" or by cells, etc. [1] (iii) "kill" yeast **or** denature **or** damage the enzymes (due to increase in temperature) [1] (iv) all glucose used up [1] yeast "killed/denature/damaged by ethanol/alcohol [1] [1] (v) filter or centrifuge fractional distillation [1] [Total: 14]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0620	32

7	(a)	(pa allo dry NO	eat experiment without indicator or use carbon to remove indicator rtially) evaporate or heat or boil ow to cool or crystallise or crystals crystals TE evaporate to dryness, marks one and two ONLY ist be in correct order	[1] [1] [1] [1]
	(b)	nur	mber of moles of NaOH used = 0.025 x 2.64 = 0.066	[1]
		ma	ximum number of moles of Na ₂ SO ₄ .10H ₂ O that could be formed = 0.033	[1]
		ma	ss of one mole of Na ₂ SO ₄ .10H ₂ O = 322g	
		ma	ximum yield of sodium sulphate - 10 - water = 10.63g	[1]
			centage yield = 37.2% rk ecf but NOT to simple integers	[1]
		if e	cf marking, mark to at least one place of decimals ercentage > 100% then 3/4 maximum	
		•		[Total: 8]
8	(a)		rning wood produces carbon dioxide s photosynthesis or trees take up carbon dioxide	[1] [1]
8	(a) (b)	less	· ·	
8	(b)	less	s photosynthesis or trees take up carbon dioxide	[1]
8	(b)	less	fats or lipids O- linkage, no other atoms in linkage COND same monomer	[1] [1] [1] [1]

[Total: 9]

[Total for paper: 80]