CAMBRIDGE INTERNATIONAL EXAMINATIONS

NOVEMBER 2001

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/3

CHEMISTRY (EXTENDED)

UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

Page 1 of 4	Mark Scheme		Paper
	IGCSE Examinations – November 2001	0620	3

An incorrectly written symbol, e.g. NA or CL, should be penalised once in a question.

In the mark scheme if a word or phrase is underlined, it (or equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark. **COND** indicates that the award of this mark is conditional upon a previous mark being gained. Unusual responses, which include correct Chemistry that answers the question, should always be rewarded - even if they are not mentioned in the marking scheme. All the candidate's work must show evidence of being marked by the examiner.

1 (a) (i) incomplete combustion or oxidation [1] carbon [1] or fuel or named fuel that could be used in a vehicle - petrol, etc. (ii) (carbon monoxide) reacts with oxide of nitrogen [1] to form carbon dioxide or complete combustion [1] **OR** equation of type below for both marks $2NO + 2CO \Rightarrow 2CO_2 + N_2$ **OR** forms carbon dioxide or uses carbon monoxide faster (iii) reduction [1] [1] COND electron gain or decrease in oxidation number (iv) bromine (water) [1] colourless NOT clear [1] **OR** potassium manganate(VII) pink or purple to colourless **OR** pink to green [1] [1] (b) (i) high temperature or heat back reaction endothermic or moves to left **OR** low pressure left side has higher volume of gases or more moles of gas **OR** remove carbon monoxide reaction try to replace it **OR** energy needed bonds breaking or to decompose Ni(CO)₄ [1] (ii) electrolysis (c) (i) saturated only single bonds or substitution reactions [1] unsaturated contains double bonds or addition reactions [1] accept examples (ii) ester [1] (iii) hydrolysis or saponification (1)sodium hydroxide (solution) (1) heat or form glycerol (and soap) (1)ONLY allow heat if sodium hydroxide given [Max 2] Any TWO

Page 2 of 4		Mark Scheme	Syllabus	Paper
		IGCSE Examinations – November 2001	0620	3
2 (a) (i)	liquefactional	on or liquid air <u>distillation</u>		[1] [1]
(ii)	medical u NOT just	se or welding or cutting metals or diving or making steel et respiration or breathing	с	[1]
(b) (i)	carbon di Accept ca If all form	oxide + water = glucose and oxygen arbohydrate NOT starch ulae are correct accept symbol equation		[1]
(ii)	chlorophy	11		[1]
(iii)	<u>rate</u> of ph on intensi more ligh	otosynthesis depends ty or brightness of light t more oxygen ONLY [1]		[1] [1]
(iv)	greater sl through o	ope rigin		[1] [1]
(v)	silver salt reduction any refere	or Ag ⁺ or decomposition or silver, Ag, forms ence to photography		[1] [1] [1]
	OR plasti biodegrad prevent lit OR chlori alkane to make c OR solar	cs lable itler or more easily disposed ne or bromine chloroalkanes or bromoalkanes panels to make electricity ONLY [2]		
(c)	*0.02 0.03 not *0.06 (3 acc Accept ra	t conseq conseq to above ept either as ratio or on n = tio conseq to answers designated by *		[1] [1] [1] [1] [Total 16]
3 (a)	5 25			[1] [1]
(b) (i)	correct ec C ₃ H ₈ + C	quation $I_2 \rightarrow C_3 H_7 Cl + HCl$		[1]
(ii)	substitution NOT exot	on or chlorination or halogenation hermic		[1]
(c) (i)	same mo THEN diff some det	lecular formula (C₃H₃O) ferent structural formulae ail about structure - functional group on different carbons		[1] [1] [1]
(ii)	different b	poiling points		[1]
(iii)	(acidified)	potassium dichromate or potassium manganate idation states		[1]
(iv)	name of a	any ester		[1]
	COND co SF of any correct SI	rrect structure must relate to name rester that does not relate to name only [1] ⁻ of any ester but name mark above not awarded [2]		[2]

Page 3 of 4		Mark Scheme		Syllabus	Paper
		IGCSE Exami	nations – November 2001	0620	3
(d) (i)	heat catalyst (i cracking details of any TWO	f specified must be corr chemistry forms shorter	ect) alkane and alkene		[2]
(ii)	water / ste COND ca	eam accept hydration bu talyst (if specified must	ut not hydrolysis be correct) or heat		[1] [1]
	OR bubbl add water	e into conc sulphuric ac	id		[Total 16]
4 (a) (i)	heat (igno	ore air) or roast NOT bu	m		[1]
(ii)	zinc sulph	nide or roast or burn or	sulphur dioxide formed		[1]
	reduce wi	th carbon or dissolve zi trolysis of blende or oxi	nc oxide in sulphuric acid and electr de	olyse	[1]
(b)	hydrochlo <u>excess</u> zii filter	ric acid nc oxide			[1] [1] [1]
		udrachlaric acid forma (-ine ablavida and) water		
	UR add h	yarochioric acia forms (zinc chloride and) water		[Max 2]
(c) (i)	brass	bronze (2% zinc)	diecast allov		[1]
(0) (1)	conner	conper	aluminium		[1]
(")					[']
(d) (i)	zinc more oxygen / v zinc react	e reactive than iron water is first			[1] [1] [1]
	OR any c zinc react zinc loses zinc forms protective it is more forms a c electron fl steel cam zinc is an sacrificial	oherent explanation of t is in preference to iron e electrons more easily is ions more easily e layer of zinc oxide easily oxidised ell low from zinc to iron not lose electrons odic protection	he type below that has three valid p	oints:	
(e) (i)	Zn - 2e ⇒	> Zn ²⁺			[1]
(ii)	Higher rea or lower i	activity metal instead of nstead of iron or bigger	Zn difference in reactivity or increase of	concentration	of
	acid		,		[1]
(f) (i)	hydroxide	2			[1]
(ii)	$O_2 + 2H_2($	$O + 4e \Rightarrow 4OH^{-}$			[2]
	$O_2 + 2H_2$	D + 2Fe → 2Fe(OH) ₂ [2]		[Total 17]

Page 4	of 4	Mark Scheme	e Syllabus Pape	
		IGCSE Examinations – November 2001	0620	3
5 (a) (i)	bleach			[1]
(ii)	kills bacte	eria or germs or micro organisms		[1]
(b) (i)	double			[1]
(ii)	both elect	trons from sulphur or equivalent		[1]
(c)	2+ on Mg 2- and 8e 1Mg : 1S	on sulphur		[1] [1] [1]
(d) (i)	completel for explar	y ionized or good proton donor nation based on high concentration of H ⁺ or low pH or protor	n donor ONL '	[2] Y [1]
(ii)	word equa water mis accept co	ation correct sing ONLY [1] rrect symbol equation		[2]
(iii)	2NaOH + unbalance or NaOH	H_2SO_4 → Na_2SO_4 + $2H_2O$ ed [1] NOT word equation + H_2SO_4 → $NaHSO_4$ + H_2O		[2]
(iv)	Mg + $2H^+$	→ $Mg^{2+} + H_2$		[2]
	molecular			[Total 15]