MNN. Firemed abers com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0610 BIOLOGY

0610/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

Que	stion	Expected Answer	rs		Marks	Additional Guidance
1	(a)	segmented body / jointed, limbs / leg exoskeleton / oute	s;		3	
	(b)	5 / 6 RIGHT = 4 4 RIGHT = 3 3 RIGHT = 2	Abaliella dicranotarsalis	E		
		1 / 2 RIGHT =1 0 RIGHT = 0	go to 2			
			go to 3			
			go to 4			
			Tegenaria domestica	Α		
			Odielus spinosus	G		
			Chelifer tuberculatus	D		
			go to 5			
			Poecilotheria regalis	F		
			go to 6			
			Tyroglyphus longior	С		
			Ixodes hexagonus	В	4	
			-		[Total: 7]	

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

Question		Expected Answers	Marks	Additional Guidance
2	(a)	(has been through) <u>capillaries</u> (in organs/named organ(s)); (has been through) an organ / named organ (beforehand);		
		lost oxygen to, (named respiring) tissues / (named)		
		organs / cells / AW ;	2	
	(b)	oesophagus;		
		stomach;		
		gall bladder;		
		duodenum;		Accept small intestine as alternative to duodenum and ileum
		ileum;		
		pancreas; colon / large intestine / rectum;	4	
		Colon / large intestine / rectain,	4	
	(c)	glucose, amino acids; (named) vitamin(s) / (named) mineral(s);		
		in solution / soluble / in the plasma; transported from, small intestine / duodenum / ileum site of absorption;		
		to liver;	max 3	
	(d)	to max 4 (when a) high glucose concentration, glucose converted to glycogen; low glucose concentration, glycogen converted to glucose; ref to correct role of, insulin / glucagon; makes plasma proteins;		
		excess amino acids , deaminated / described ; to max 3 alcohol, broken down / respired / metabolised ; named toxin, broken down; R toxin unqualified	max 5	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

	ı	,		
(e)		phagocytes to max 3		
	1 2 3 4	ingest / engulf , bacteria / pathogens / viruses ; R 'eat' digest / destroy (bacteria / pathogens / viruses) ; using enzymes ; any further detail ;		
		lymphocytes to max 3		
	5 6 7	make / produce / secrete / release, antibodies; idea of specificity / lymphocytes respond to particular pathogen or antigen; effect of antibodies described;		
	8	AVP;	max 4	AVP for either cell type, could be additional point about antibodies
			[Total: 18]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

Quest	ion	Expected Answers	Marks	Additional Guidance	
3	(a)	lowered / flattened / AW; increases / AW; decreases / AW; higher / greater / more; into / inside; alveoli;	6		
	(b)	(A / goblet cell) secretes / produces, mucus; sticky; collects / traps, particles (in the air); cilia, move / beat / waft; mucus moves / removes, away from alveoli / out of trachea / towards larynx / towards mouth / AW;	max 4	ignore hairs direction needed	
I			[Total: 10]		

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

Ques	Question		Expected Answers		Additional Guidance
4	(a)	CO ₂	+ H ₂ O;		marks for:
		→ C ₆ H ₁	₁₂ O ₆ + O ₂ ;		correct formulae for carbon dioxide and water correct formulae for glucose and oxygen balancing the equation
		6O ₂ ,	6CO ₂ , 6H ₂ O ;	3	ignore word equation
	(b)	4.98	:	1	
I I	(2)	1.00	,	•	
	(c)	(i)	constant light intensity / ora; idea that light intensity is not the factor that is varied / not the independent variable / only carbon dioxide is varied / it is a control(led) variable;	2	accept: if changed, would change rate of photosynthesis itself / AW R simply 'makes results invalid'
		(ii)	gas / oxygen / air, collects at top of syringe / from plant or photosynthesis; creates pressure to force water down the tube;	2	R CO ₂ A push
	(d)	per o	centration of (sodium) hydrogen carbonate / mol dm³ + rate of photosynthesis (1000 / t); t plotted correctly; of best fit;	3	A ecf from (b)

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

(e)	rate of photosynthesis increases as concentration of carbon dioxide increases (up to 0.07 mol per dm³); data quote; carbon dioxide (concentration) is limiting factor;		
	after 0.07 mol per dm³:- rate of photosynthesis remains (near) constant; data quote; carbon dioxide (concentration) is not the limiting factor; light intensity / temperature, is limiting factor;	max 5	A increases very little
		[Total: 16]	

Page 8	Page 8 Mark Scheme Syllabus		Paper
	IGCSE – October/November 2012	0610	31

ion	Exp	ect	ted Answers	Marks	Additional Guidance
(a)	cart	on	dioxide CO ₂ ;		
				_	
	extr	acti	on / coal mines / gas fracking sites / AW ;	2	
(b)	(nar	nec	d) greenhouse gases :		
(~)					R UV radiation
			rface / prevents heat escaping (to space) /		
		•	and wavelength connet 'cocone' Forth's		
				may 3	
	atiii	osp	nicio / Avv ,	IIIdx 0	
(c)	(i)				
		I I			Accept reaches a peak in 1975-1980
		_	•		
		I I	· · · · · · · · · · · · · · · · · · ·		
		I I	· · · · · · · · · · · · · · · · · · ·		year and emission must be given for each point, units
			,	max 4	mentioned once
	(ii)				A acidifies lakes
			•		A marble, gravestones, etc.
			<u> </u>	max 3	A marbio, gravestories, etc.
	(a)	(a) carbon rice extraction (b) (nar trap radia near AW ref t atmosphere) (c) (i)	(a) carbon rice fiel extracti (b) (named trap / a radiate near su AW; ref to lo atmosp (c) (i) 1 2 3 4 5 6 7 7 (ii) 1 2 3 4	 (a) carbon dioxide CO₂; rice fields / cattle / land fill / rotting rubbish / oil extraction / coal mines / gas fracking sites / AW; (b) (named) greenhouse gases; trap / absorb, heat / (infra red / IR) radiation; radiated back towards the Earth's surface / heat kept near surface / prevents heat escaping (to space) / AW; ref to long wavelength cannot 'escape' Earth's atmosphere / AW; (c) (i) 1 increases until 1975; 2 decreases from 1980; 3 to levels in 1930s / less than 1940; 4 idea that slow rate of increase to 1940; 5 faster rate of increase from 1945; 6 decrease between 1940–1945; 7 comparative data quotes; (ii) 1 lowers pH of, soil / water; kills / damages, leaves / plants / trees; 	(a) carbon dioxide CO ₂ ; rice fields / cattle / land fill / rotting rubbish / oil extraction / coal mines / gas fracking sites / AW; (b) (named) greenhouse gases; trap / absorb, heat / (infra red / IR) radiation; radiated back towards the Earth's surface / heat kept near surface / prevents heat escaping (to space) / AW; ref to long wavelength cannot 'escape' Earth's atmosphere / AW; (c) (i) 1 increases until 1975; 2 decreases from 1980; 3 to levels in 1930s / less than 1940; 4 idea that slow rate of increase to 1940; 5 faster rate of increase from 1945; 6 decrease between 1940–1945; 7 comparative data quotes; (ii) 1 lowers pH of, soil / water; 2 kills / damages, leaves / plants / trees; 3 salts / minerals / ions, lost from soils; 4 toxic to / kills, fish / animals in waters / lakes / rivers; 5 damages, limestone buildings / bronze

Page 9	Page 9 Mark Scheme Syllabus		Paper
	IGCSE – October/November 2012	0610	31

(iii)	use, alternative / renewable / green / AW , sources of energy ; A example(s)		
	use low sulfur fuels / ORA;		
	reduce use of coal;		
	flue gas desulfurisation / 'use scrubbers' / chimney electrostatic precipitators / neutralise waste gases with lime;		
	catalytic converters ;		
	(named) international treaty for reducing emissions;		
	AVP ; e.g. any method to reduce demand for energy		car sharing / more public transport / cycle paths / AW
		max 3	
		[Total: 15]	

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

Quest	ion	Expected Answers	Marks	Additional Guidance
6	(a)	self-pollination, occurs within same flower / between flowers of same plant; cross-pollination, occurs between flowers on different		
		plants ;	2	
	(b)	wastage of pollen; wastage of energy; explanation; depends on presence of pollinator; need a pollinating / other, plant (nearby); long time for next generation to develop; seeds scattered to places where they cannot grow; variation leads to plants that are not adapted to place where parents grow / seeds end up;	max 4	A idea of pollen does not reach a stigma
,	(-)			
	(c)	round RR wrinkled rr ;	1	

Page 11	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0610	31

(d)		cross	phenotype of seeds in the seed pods			ratio of round to	
			round see		wrinkled seeds	wrinkled seeds	
	1	pure bred for round seeds x pure bred for wrinkled seeds	✓		*	1:0	
	2	offspring of cross 1 self pollinated	✓		✓	3:1 ;	
	3	offspring of cross 1 x pure bred for round seeds	√		×	1:0 ;	
	4	offspring of cross 1 x pure bred for wrinkled seeds	✓		✓	1:1 ;	
				3			
(e) controlled by (a) gene alone; limited number / two, (pheno)types; no intermediates;			max 1	A (just) two type	s / round & wrinkled		
	no interne	uiates ,		παλ τ			
	2 where m 3 better (na 4 less com				light / water / mir	nerals / CO ₂ / space	
		nce of) disease ; allows breeding with wider varie	ty of		e.g. bigger gene	pool / more alleles /	
	7 AVP ;			max 3	e.g. Some surviv	e a localized disaste	
				[Total: 14]		_	