CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0606 ADDITIONAL MATHEMATICS

MMM. Hiremepapers.com

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0606	13

		1	
1	<i>a</i> = 3	B1	
	<i>b</i> = 2	B1	
	<i>c</i> = 4	B1	
2	$x^2 = 16$ or $y^2 - 4y + 3 = 0$	M1	for correct elimination of one variable and attempt to form a
	$x = \pm 4$ y = 1, 3 Points (-4, 1) and (4, 3)	A1 A1	quadratic equation in x or y.
	Line $AB = \sqrt{8^2 + 2^2}$	M1	for use of Duthageres theorem
	$Line AD = \sqrt{6} + 2$		
	$=\sqrt{68} \text{ or } 2\sqrt{17}$	AI	allow either form
3 (i)	n(A) = 2	B 1	
	n(B) = 3	B1	B0 for $n(2)$, $\{2\},\{0\}, \emptyset, \{\}$ etc.
	n(C) = 0	B1	
(ii)	$A \cup B = \{-1, -2, -3, 3\}$	B1	
(iii)	$A \cap B = \{-2\}$	B1	
(iv)	ξ , 'the universal set', R, 'real numbers', $\{x:x \in \}$	B 1	
4 (a)	$\tan x = -\frac{5}{3}$	M1	Correct statement or $\tan x = -1.67$
	$x = 121.0^{\circ}, \ 301.0^{\circ}$	A1 A1ft	A1 for either correct solution ft from <i>their</i> first solution
(b)	$\sin\left(3y + \frac{\pi}{4}\right) = \frac{1}{2}$	M1	for dealing correctly with cosec and attempt to solve subsequent equation
	$3y + \frac{\pi}{4} = \frac{\pi}{6}, \ \frac{5\pi}{6}, \ \frac{13\pi}{6}, \ \frac{17\pi}{6}$	A1	for $\frac{\pi}{6}$, $\frac{5\pi}{6}$, or $\frac{13\pi}{6}$, or $\frac{17\pi}{6}$
	$3y = -\frac{\pi}{12}, \frac{7\pi}{12}, \frac{23\pi}{12}, \frac{31\pi}{12}$	DM1	for correct order of operations
	$y = \frac{7\pi}{36}, \frac{23\pi}{36}, \frac{31\pi}{36}$ (0.611, 2.01 and 2.71)	A1, A1	A1 for one correct solution A1 for both the other correct solutions and no others in range.

Ρ	age 3	Mark Scheme			Syllabus	Paper	l
		Cambridge IGCSE – October/November 2014			0606	13	
5	(a) (i	$\begin{pmatrix} 12 & 2 & 1 \\ 9 & 3 & 0 \\ 8 & 5 & 1 \\ 11 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.4 \\ 0.45 \end{pmatrix} = \begin{pmatrix} 7.25 \\ 5.70 \\ 6.45 \\ 6.30 \end{pmatrix}$	M1	for correct the correct each mate Allow if o	et compatible et order. Allo rix. done in cents	matrices in w 1 error in	
		or $(0.5 0.4 0.45) \begin{pmatrix} 12 & 9 & 8 & 11 \\ 2 & 3 & 5 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	DM1	for a corr their mati appropria	ect method for rices to obtain te 4 by 1 or 1	or multiplyir 1 an 1 by 4 matrix	ıg x.
		=(7.25 5.70 6.45 6.30)	A2,1,0	A2 all con	rrect	ate	
	(ii)	25.70	B 1	Allow 25	.7	115.	
	(b)	$\mathbf{Y} = \mathbf{X}^{-1} \text{ or } \mathbf{Y} = \mathbf{X}^{-1}\mathbf{I}$ $\mathbf{Y} = \frac{1}{22} \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{22} & -\frac{4}{22} \\ \frac{5}{22} & \frac{2}{22} \end{pmatrix}$ Alternative method:	M1 A1 A1	for matrix for $\frac{1}{22}$ for $k \begin{pmatrix} 1\\ 5 \end{pmatrix}$	$\begin{pmatrix} a \ a \ b \ a \end{pmatrix} = \begin{pmatrix} -4 \\ 2 \end{pmatrix}$		
		$ \begin{pmatrix} 2 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	M1	for a com	plete method	using	
		$2a + 4c = 1, \ 2b + 4d = 0$ -5a + c = 0, -5b + d = 1	A1	$a = \frac{1}{22} \text{ a}$ or $b = -\frac{1}{2}$	nd $c = \frac{5}{22}$ $\frac{4}{22}$ and $d = \frac{2}{2}$	<u>2</u> 2	
		leading to $=\frac{1}{22}\begin{pmatrix}1 & -4\\5 & 2\end{pmatrix}$ oe	A1	for correc	et matrix		

Page 4	Mark Scheme				Paper	
	Cambridge IGCSE – October/November 2014			0606	13	
6 (i)	$\cos 0.9 = \frac{6}{12}$ or $\frac{OC}{OC} = \frac{12}{12}$	M1	for correc	t use of cosi	ne sine rule	
	$OC = \frac{6}{\cos 0.9} = 9.652$		cosine rule or any other valid method			
	or $OC = \frac{12\sin 0.9}{\sin(\pi - 1.8)} = 9.652$	A1	for manip OC = 9.63 Must have rounding	oulating corre 52(35) e 4 th figure (o	ectly to or more) for	
(ii)	Perimeter = $(0.9 \times 12) + 9.652 + (12 - 9.652)$	B1 M1	for arc ler for attemp lengths	for arc length for attempt to add the correct		
	= 22.8	A1	8			
(iii)	Area = $\left(\frac{1}{2} \times 12^2 \times 0.9\right) - \left(\frac{1}{2} \times 9.652^2 \sin(\pi - 1.8)\right)$	B1	for area o unsimplif	f sector, allo ied	W	
		B 1	for area o	f isosceles tr	iangle	
			$\frac{1}{2}(9.65(2))^2\sin(\pi - 1.8)$ or			
			$\frac{1}{2}(12 \times 6 \tan 0.9)$ or			
			$\frac{1}{2}(12 \times 9.6)$	$65(2) \times \sin 0$	0.9, allow	
	$\begin{array}{rcrcr} 64.8 & - & 45.36 \\ & = & 19.4 \text{ to } 19.5 \end{array}$	B1	unsimplif for answe	ied. er in range 19	9.4 to 19.5	
	Alternative Method:					
	$\frac{1}{2}(12-9.652) \times 9.652 \times \sin 1.8$	B1	for area o unsimplif	f triangle AC ied	СВ,	
	$\frac{1}{2}12^2(0.9 - \sin 0.9)$	B 1	for area o	f segment, u	nsimplified	
	11.04 + 8.40 Area =19.4 to 19.5	B1	answer in	range 19.4 t	o 19.5	
7	$1 + 2\log_5 x = \log_5(18x - 9)$	B1, B1	B1 for dedealing w	aling with '1 ith '2'	', B1 for	
	$\log_5 5 + \log_5 x^2 = \log_5 (18x - 9)$	M1	for a corresubtraction	ect use of ado on of logarith	dition or ms	
	$5x^{2} = 18x - 9$ (5x-3)(x-3) = 0	DM1	for elimin form a 3 t	ation of loga erm quadrati	rithms to ic and for	
	$x = \frac{3}{5}, 3$	A1	solution c for both x	of quadratic values		

Page 5	Mark Scheme			Syllabus	Paper	
	Cambridge IGCSE – October/November 2014			0606	13	
		1	1			
	$(3x^2)$ (-3)					
8 (i)	$f'(x) = \left x \times \frac{3x}{x^3} \right + (\ln x^3)$	M1	for differe	entiation of a	product	
		B1	for differentiation of $\ln x^3$			
	$=3+3\ln x$, $=3(1+\ln x)$	A1	for simplification to gain given			
			answer	answer		
	or $f(x) = 3x \ln x$	B1	for use of $\ln x^3 = 3 \ln x$			
	(1)					
	$f'(x) = \left(3x \times \frac{1}{x} \right) + 3\ln x$,	M1	for differe	for differentiation of a product		
	$-3(1+\ln x)$	A 1	for sime	fightion to a	in airran	
	= 5(1 + 111x)	AI	for simpli	incation to ga	ain <u>given</u>	
			answer			
(;;)	$\int 2(1 + 1\pi) d = 1\pi^{-3} - 2\pi 4\pi^{-3}$	M1	C 1'''	41 4 1.00	,. , . .	
(11)	$\int 3(1+\ln x) dx = x \ln x \text{or} 3x \ln x$	IVII	for realisi	ng that differ	entiation is	
			(i)	e of integrati	on and using	
	$\int 1 + \ln x dx = \frac{1}{2} x \ln x^3$ or $x \ln x$	A1	(1)			
	J ¹ multi 3 ² million of white					
(iii)	$\left x \ln x - \int 1 dx \text{ or } \right \frac{1}{-x \ln x^3} \left - \int 1 dx$	DM1	for using	answer to (ii	and	
	J [3] J		subtractin	ig fldx dene	ndent on M	
			5 do fractin	is fran depe		
	2		mark in (i	ii)		
	$[r \ln r - r]_{1}^{2}$ or $[\frac{1}{r} r \ln r^{3} - r]^{2}$	DM1	for correc	t application	of limits	
	$\begin{bmatrix} x \\ 1 \\ x \end{bmatrix}_{1} \text{or} \begin{bmatrix} x \\ 3 \end{bmatrix}_{1}$			e application	01 1111105	
	$= 2 \ln 2 - 2 + 1$					
	$= -1 + \ln 4$	A1	from corr	ect working		
0 (-)	5 ^p (25	D1				
9 (a)	$5^{*} = 625$, so $p = 4$	BI				
	$\frac{4}{2} c_{1} c_{2} c_{2} c_{1} c_{1} c_{1} c_{2} c_{1} c_{2} c_{2} c_{1} c_{2} c_{1} c_{2} c_{2} c_{1} c_{2} c_{1} c_{2} c_{2} c_{2} c_{2} c_{1} c_{2} c_$	N/1		1 1 . 7	p = p - 1	
	$C_1 5^{p-1}(-q) = -1500$	MI	their p su	bstituted in r	$C_1 5^r (-q)$	
	$4 \times 125(-q) = -1500$		or in ${}^{p}C_{1}$	$5^{p-1}(-qx)$ ur	simplified	
	q = 3	A1				
	${}^{4}C_{2}5^{p-2}q^{2} = r$	M1	<i>their p</i> an	d q substitute	ed in	
			${}^{p}C_{2}5^{p-2}$	$(-q)^2$ or pC_2	$5^{p-2}(-qx)^2$	
			unsimplif	ied		
		. 1				
	r = 1550	AI				
	$(1)^3$					
(b)	$\left {}^{12}C_3(2x)^9 \right \frac{1}{4^{-3}}$	M1	for identit	fying correct	term	
	(4x)	DIS	C			
		DM1	tor attemp	pt to evaluate	correct	
			expression	11		
	Term is 1760	Δ1	must he e	valuated		
	10111101700		must be e	aruuted		

	Page 6	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October/November 2014			0606	13	
L							1
	10 (a)	$\frac{5^x}{5^{2(3y-2)}} = 1$ or $\frac{3^x}{3^{3(y-1)}} = 3^4$ oe	M1	for obtaining one correct equation in powers of 5, 3, 25, 27 or 81			
		x = 6y - 4	A1	for $x = 6y - 4$ oe linear equation			
		x = 3y + 1	A1	for $x = 3y + 1$ oe linear equation			
			M1	for attempt to solve linear			
		Leads to $x = 6$, $y = \frac{5}{3}$	A1	simultaneous equations which been obtained correctly for both.			, C
	(b)	Using the cosine rule: $(1 + 2\sqrt{3})^2 = (2 + \sqrt{3})^2 + 2^2 - 4(2 + \sqrt{3})\cos A$	M1	for correc rule, may	t substitutior use in form	in in cosine of $\cos A =$	
		$\cos A = \frac{(13+4\sqrt{3})-(7+4\sqrt{3})-4}{-4(2+\sqrt{3})} \text{ oe}$	DM1	for attempt to make cos <i>A</i> subject and simplify for rationalisation.			
		$\cos A = \frac{-1}{2(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	DM1				
		$\cos A = -1 + \frac{\sqrt{3}}{2}$	A1				

Page 7	Mark Scheme				Paper]
	Cambridge IGCSE – October/November 2014			0606	13	
		1	1			-
11 (i)	$\frac{dy}{dx} = (x+5)2(x-1) + (x-1)^2$	M1 A1	for differe allow uns correct	entiation of a implified	product,	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = (x-1)(3x+9)$					
	When $\frac{dy}{dr} = 0$	DM1	for equating to zero and solution			
	x = 1	A1	quadratic			
	x = -3 Alternative method:	A1				
	$y = x^3 + 3x^2 - 9x + 5$	M1	for expan differentia term cubi	sion of brack ation of each c	tets and term of a 4	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6x - 9$	A1				
	When $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	DM1	for equati 3 term qu	ng to zero ar adratic	d solution o	of
	x = 1	A1	from corr	ect quadratic	equation	
	<i>x</i> = -3	A1	from corr	ect quadratic	equation	
(ii)	$\int x^3 + 3x^2 - 9x + 5dx$	M1	for correct integrate	t attempt to a 4 term cubi	obtain and	
	$=\frac{x^{2}}{4}+x^{3}-\frac{9x^{2}}{2}+5x \ (+c)$	A2,1,0	A2 for 4 or A1 for	correct terms 3 correct ter	ms	
(iii)	$\begin{bmatrix} \frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x \end{bmatrix}_{-5}^{1}$	M1	for correc and -5 for	t substitution r <i>their</i> (ii)	n of limits 1	
	$= \left(\frac{1}{4} + 1 - \frac{1}{2} + 5\right) - \left(\frac{322}{4} - 125 - \frac{122}{2} - 25\right)$ $= 108$	A1				
(iv)	When $x = -3$, $y = 32$	M1	for realisi the maxin	ng that the y-	-coordinate on needed.	of
	<i>k</i> > 32	A1		-		