CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

www.tiremepapers.com

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3 Mark Scheme		Syllabus Paper			
		IGCSE – October/November 2	0606	21		
1	(x +	(x-1)	M1	Attempt to solve a three term		
	Criti	cal values –6 and 1	A1	quadranc		
	- 6 <	x < 1	A1	Allow $x > -6$ AND $x < 1$ but not OR		
			נטן	or a comma. Mark fi	nal answer.	
2	$(4\sqrt{5})$	$(5-2)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,		
	Mult	iply top and bottom by $\sqrt{5+1}$	M1	Must be attempt to expand top and bottom.		
	$17\sqrt{3}$	5 + 1	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$		
	OR		[-]			
	$(4\sqrt{5})$	$(-2)^2 = 80 - 16\sqrt{5 + 4}$	M1			
	$\left(\sqrt{5}\right)$	$-1(n\sqrt{5}+a) = 5n-a+\sqrt{5(a-n)}$	M1			
	Lead	ing to $5n-a=84$ $a-n=-16$	1411	Must get to a pair of	simultaneous	
	p = 1	7 q = 1	A1 A1	equations for this ma	ırk	
3	(i) $\frac{dy}{dt} =$	$=k\left(\frac{1}{4}x-5\right)^7$	M1			
	k = 2	(4)	A1 [2]			
	(ii) Use	$\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	\checkmark on <i>k</i> needs both M	marks	
	_256	dx	A1√ [^]	\oint only for $-128kn$ ar	nd must be	
	230	P	[2]	evaluated		
4	(i) 10		B 1			
	(ii) –5		[1] B1	Not $\log_n 1 - 5$		
	(III) $\log_p XY = \log_p X + \log_p Y = 7$		B 1	$\text{Or } \log_{XY} p = \frac{1}{\log_p X}$	Y	
				Do not allow just log	$g_p X + \log_p Y = 7$	
	$\frac{1}{7}$		B1√ [^] [2]	\checkmark^{h} on $\frac{1}{\log_{p} XY}$		

	Page 4		Mark Scheme	Syllal	ous	Paper		
			IGCSE – October/November 2013			6	21	
r								
5		x - 4	y = 5 oe	B 1				
		2 <i>x</i> +	2y = 5 oe	B 1				
		Solve	their linear simultaneous equations	M1	Each in two	es and not		
					quadratic as far as $x = \dots$ or $y = \dots$			
		x = 3	or $y = -0.5$	A1,A1√				
				[5]				
		0.602	2r - 2408v = 3.01	BI				
		0.002	4x + 0.954y = 2.386	B 1				
		OR f	rom ln	D1				
		1.386	5x - 5.545y = 6.931	BI				
		2.19	7x + 2.197y = 5.493	BI				
		Final	M1A1A1 \checkmark follows as before					
6	(a) (i)	-8 or	20	B 1	± 40 implie	$s \pm 2 \times 2$	0 or +160	
			$\begin{pmatrix} 3 \end{pmatrix}$.	D 1	hence BI			
		-160	(x^3) 1SW	BI	OK if seen i	n expans	sion	
				[2]				
	(ii)	$60(x^2)$		B 1	Can be impl	ied		
		(i) +	$\frac{1}{2}$ (their 60)	M1				
		-130	$\left(r^{3}\right)$	A1				
		150		[3]				
		1 5 2	aa at 8 1		T (1 1	· 1 · 11 · 01 · 0	
	(0)	$16x^{-}$	$+32x+24+-+\frac{1}{x^2}$ oe	B3,2,1,0	B2 for 4 terr	be evalu	$ated (allow 24x^{\circ})$	
					B1 for 2 or 3	B terms of	correct.	
				[3]	ISW once ex	pansion	is seen.	
7	(i)	$l = \frac{3}{2}$	$\frac{500}{2}$	B 1	allow $lx^2 =$	3500		
		L = 3	$x \times 4x + 2x + 2l$	B1	RHS 3 terms	s e.g. 12	$x + 2x + 2\left(\frac{3500}{2}\right)$	
						U	$\begin{pmatrix} x^2 \end{pmatrix}$	
		~ .			or better			
		Subst	itute for <i>l</i> and correctly reach					
		L = 1	$4x + \frac{7000}{2}$	DB1ag	Dependent of	on both p	previous B marks	
			<i>x</i> ²	[3]				
	(1)	$\mathrm{d}L$	14000					
	(ii)	$\frac{dz}{dx} =$	$14 - \frac{1000}{r^3}$	M1A1	M1 either po	ower red	uced by one	
		u.	dL		AI both tern	ns corre	ct	
		Equa	te $\frac{dx}{dx}$ to 0 and solve	DM1	Must get x	=		
		x = 1)	A1	Both values			
		L = 2	10					
		$d^2 y$	$=\frac{42000}{1000}$ and minimum stated	R1	Or use of gra	adient ei	ther side of	
		$dx^{\overline{2}}$	x^4 and minimum stated	[5]	turning poin	t.		

Page 5		Mark Scheme					Syllabus	Paper			
				IGCSE	- Octo	ber/Noveml	ber 2013		0606	21	
8	(i)	x^2					B1 [1]	Im Ma	Implied by axes or values in a table. May be seen in (ii)		
	(ii)	Plot ·	$\frac{y}{x}$ agair	st x^2 w	vith linear	scales		М	Must be linear scales		
		x^2	4	16	36	64	B1	At least 3 correct points plotted and			
		$\frac{y}{x}$	4.8	9.6	17.5	29	B1 [2]	Liı lea	Line must be ruled and through at least 2 correct points		
	(iii)	Finds $a = 0$	gradier 4 ± 0.07	nt (0.4)			M1	Co	ondone use of corr	rect values from	
		a = 0 b = 3	$.2 \pm 0.4$	2			A1 B1 [3]	equation. Values read from graph must be correct.			
	(iv)	Read	$\frac{y}{x} = 12$.5			M1	Obtaining $(x^2) = 22$ to 24 from grap			
		or sul	ostitute	in form	ula			As far as $x^2 = +ve$ constant			
		4.8					A1 [2]	4.7 to 4.9 ignore -4.8 or 0			
9		Meth Takes 12vsi 12(vc) Solve $\alpha = 3$ v = 5	od A s composition $\alpha = 4$ cos $\alpha + 1$ b s $\alpha = 4$ e for v of 9.6 23	pnents 0 (.8) = 70 (.8) = 70 (.8) = 70 (.8) = 70 (.8) = 70			M1 A1 A1 M1A1 DM1 A1 A1 [8]	Al	low 0.691 radians		
		Meth $x = 1$ $y = 7$ $D^{2} =$ $D = 0$ $V = \frac{1}{1}$ $V = 5$ $\tan \alpha$ $\alpha = 3$	od B x $8 \times 12 =$ $0 - 21.6$ $40^{2} + 4$ 52.8 $\frac{D}{2}$ 3.23 $= \frac{40}{48.4}$ 9.6°	70 21.6 5 = 48.4 $8.4^2 (= 3)$	<u>р</u> у	40	B1 B1 M1 A1 DM1 A1 M1 A1 [8]	5.2 Al	23 or better low 0.691 radiant	5	

Page 6	Mark Scheme	Syllabus	Paper	
-	IGCSE – October/November	0606	21	
Meth $z = \sqrt{2}$ $v = \frac{1}{2}$ $V^{2} = \frac{1}{2}$ $V = \frac{1}{2}$ $V = \frac{1}{2}$	od C V V V V V V V V	B1 B1 B1 M1 A1 M1	Or $\tan(90-\delta) = \frac{7}{4}$	
	5	A 1	Allow 0 172 radiana	
p = s	9.8(3) or $9.8(2)$	A1 A1	Allow 0.601 radians	
$\alpha = 1$	29.74 + p = 39.0	A1 [8]	Allow 0.091 fadialis	i
Meth $z = \sqrt{x}$ $x = 1$ $\tan \delta$ $D^{2} =$ $V = 0$	od D z B $40\sqrt{40^2 + 70^2} (= 80.6).8 \times 12 = 21.6\frac{4}{7} \rightarrow (\delta = 29.74) oe221.6^2 + 80.6^2 - 2.21.6.80.6 \cos 29.7462.8/12) = 5.23$	B1 B1 M1 A1	This method has extra this point the M marl equation in D but the value of V .	ra steps so note at k is for an e A mark is for a
$\frac{\sin \beta}{21}$	$\frac{6}{6} = \frac{\sin 29.74}{62}.8$			
$\beta = 0$ $\alpha = 2$	9.8(3) or 9.8(2) 29.74 + β = 39.6	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians	

	Page 7		Mark Scheme	Syllabus	Paper		
			IGCSE – October/November 2	0606	21		
10	(i)	AB^{2} 15.4 1 A=2	$= 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ to 15.5	M1 A1 B1	$AB = 2 \times 12 \sin 0.7$ May be implied		
		o = 2	n - 1.4 = 4.88	DI			
		Use $s = r\theta (= 58.6)$		M1	12×4.9 or better oe	•	
		/4.1		A1 [5]			
	(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or			May be implied .		
		$\pi \times 1$ (Trian	$a_{2}^{2} - \frac{1}{2} \times 12^{2} \times 1.4$ $a_{2}^{2} = \frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$ $a_{1}^{2} = \frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1 M1	May be implied		
		422 c	r 423	A1 [4]	May be implied		
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	$\frac{1}{3}e^{\frac{1}{3}x}$	B1			
		$m = -\frac{1}{2}$	$\frac{1}{2}e^{3}$	M1	For insertion of $x = 9$	9 into	
			$3^{3} - \frac{1}{2} a^{3}(x = 0)$	DM1	their $\frac{dy}{dx}$. 6.7 or bette	er if correct.	
		y-e	$=\frac{-3}{3}e^{-(x-y)}$	DIVII	y = 6.7x - 40.2 or b	etter if correct.	
	At Q		y = 0, x = 6	A1 [4]	Accept value that rou	unds to 6.0 to 2sf	
	(ii)	Area	triangle 1.5e ³ or 30.1	B1			
		$\int e^{\frac{1}{3}x}$	$dx = 3e^{\frac{1}{3}x} oe$	B1			
		Uses	limits of 0 and 9 in integrated function.	M1	\pm must see both valuincorrect answer	ues inserted if	
	$3e^{3}$ -		3 or 57.3	A1			
		Area	under curve subtract area of triangle	M1			
		1.5e ³	– 3 or 27.1	A1 [6]	Condone 27.2 if obta 57.3 – 30.1.	ined from	

	Page 8		Mark Scheme		Syllabus	Paper
	IGCSE – October/November		er 2013	0606	21	
					1	
12	(a)	cosec	$x = \frac{1}{\sin x}$ inserted into equation	B1		
		tan x	$=-\frac{2}{7}$	DB1		
		164.1 344.1	,	B1 B1√ [*]	One correct value. on $180 + (164.1)$ M tanx = Condone164 and 344	Aust come from
	(b)	(2 <i>y</i> – Find <i>y</i> 0.898 1.67,	1) = 0.79or 2.34 y using radians (or 0.9 or 0.90) 4.04 and 4.81(45)	[4] B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45 Add 1 then divide by angle One correct value Another correct value Final two values Deduct 1 mark for ex	5.6° y 2 on a correct le xtras in range