CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

www.tiremepapers.com

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0606	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3 Mark Scheme					Syllabus	Paper
		IGCSE – October/Nove	mber 20)13		0606	11
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1	[3]	B1 for	each	
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$9 = 4 (k + 1)^{2}$ - 5 = 0	M1 DM1			any use of $b^2 - 4ac$ or solution of their	
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1		A1 for	critical value(s), $\frac{1}{2}$	not necessary
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [[4]	A1 for	$k < -\frac{5}{2}$ only	
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$x = \frac{3}{2(k+1)}$ $\frac{9}{(k+1)^2} - \frac{9}{2(k+1)} + (k+1)$ e x-axis, y < 0 $\frac{1}{1} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	М1		M1 for	a complete method	l to this point.

Page 4					Syllabus	Paper
	IGCSE – October/Nov	ber/November 2013			0606	11
				1		
	3 $\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$				ractions, rect, be generous	
	$=\frac{2+2\sin\theta}{\cos\theta(1+\sin\theta)}$				expansion and use $+\sin^2\theta = 1$	e of
$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin \theta}{+\sin \theta}$	DM1		M1 for	attempt to factoris	se
$=2 \sec \theta$		A1	[4]	A1 for	obtaining final ans	swer correctly
$= \frac{(\sec \theta + t)}{\sec \theta}$ $= \frac{\sec^2 \theta + t}{2 \sec^2 \theta}$ $= \frac{2 \sec^2 \theta}{2 \sec^2 \theta}$	$\theta + \frac{1}{\sec \theta + \tan \theta}$ $\frac{\operatorname{an} \theta}{+ \tan \theta}^{2} + \frac{1}{+ \tan \theta}$ $\frac{2 \sec \theta \tan \theta + \tan^{2} \theta + 1}{\sec \theta + \tan \theta}$ $+ 2 \sec \theta \tan \theta$	M1 DM1			dealing with the f	
$=\frac{2\sec\theta(\sec\theta)}{\sec\theta}$	$\frac{\theta + \tan \theta}{\det \theta + \tan \theta}$	DM1		$\tan^2 \theta$ DM1 f	$+1 = \sec^2 \theta$ for attempt to factor	rise
$=2 \sec \theta$		A1		A1 for	obtaining final ans	swer correctly
4 (i) n (<i>A</i>) = 3		B1	[1]	correct $n(A) =$	ents listed for (i), t elements to get B 3. If they are not l given then B1.	1 leading to
(ii) n (<i>B</i>) = 4		B1	[1]	correct B1. If t	ents listed for (ii), elements leading t they are not listed a hen B1.	
(iii) $A \cup B = \{$	{60°, 240°, 300, 420°, 600°}	√B1	[1]	Follow through on any sets listed in (i) an (ii). Do not allow any repetitions.		
(iv) $A \cap B = \{$	{60°, 420°}	√B1	[1]	Follow (ii).	through on any se	ts listed in (i) and

Page 5	ge 5 Mark Scheme				Paper	
	IGCSE – October/Nove	ember 2013		0606	11	
5 (i) $9x - \frac{1}{3}co$	s3x(+c)	B1, B1, B1 [3]	B1 for 9x, B1 for $\frac{1}{3}$ or cos3x B1 for $-\frac{1}{3}$ cos3x Condone omission of + c			
(ii) $\left[9x - \frac{1}{3}c\right]$	$\left[\cos 3x\right]_{\frac{\pi}{9}}^{\pi}$					
$=\left(9\pi-\frac{1}{3}\right)$	$\frac{1}{3}\cos 3\pi \left(-\frac{1}{3}\cos \frac{\pi}{3} \right)$	M1	M1 for to (i)	correct use of limi	ts in their answer	
$=8\pi+\frac{1}{2}$		A1, A1 [3]	A1 for	each term		
$6 \qquad \mathbf{f}\left(\frac{1}{2}\right) = \frac{a}{8} + 1$	$+\frac{b}{2}-2$	M1	M1 for	substitution of x =	$=\frac{1}{2}$ into f (x)	
leading to $a +$	4b - 8 = 0	A1	A1 for	correct equation in	any form	
f(2) = 2f(-1)		M1	x = -1	attempt to substitution $f(x)$ and use $f(x) + f(x) + f(x)$		
8a + 16 + 2b -	-2 = 2(-a + 4 - b - 2)	A1	2f(2) = A1 for	$\pm I(-1)$ a correct equation	in any form	
leading to $10a$ $\therefore a = -2, b$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attemp obtain	on both previous N t to solve simultance either <i>a</i> or <i>b</i> both correct		

Pa	age 6 Mark Scheme		Syllabus	Paper				
		IGCSE – October/Nove	mber 20)13	0606	11		
7 (a)	(i) 36(ii) 12		B1	1]				
(b)	(i) 92(ii) 28		B1 [B1	1] 1]				
	(i.e. 92	$24 - ({}^{8}C_{3} \times {}^{4}C_{3}) - ({}^{8}C_{2} \times {}^{4}C_{4})$ 24 - 3M 3W - 2M 4W) 24 - 224 - 28	M1	M1 fo correc	r 3 terms, at least 2 t in terms of <i>C</i> nota c any pair (must be o	tion or evaluated.		
924 - 224 - 28 = 672					final answer	(vuluuou)		
Or	: 4M 2W	${}^{8}C_{4} \times {}^{4}C_{2} = 420$	M1		M1 for 3 terms, at least 2 of which must correct in terms of <i>C</i> notation or evaluat			
	5M 1W ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ 6M ${}^{8}C_{6} = 28$				any pair (must be			
		Total = 672	A1	A1 for	A1 for final answer			
8 (i)			B1 B1		correct shape $(-3, 0)$ or -3 seen	on graph		
			B1 B1		(2, 0) or 2 seen on (0, 6) or 6 seen on			
				4]				
(ii)	$\left(-\frac{1}{2}, \frac{2}{4}\right)$	$\left(\frac{5}{5}\right)$	B1, B1	2] B1 for	each			
(iii)	$k > \frac{25}{4}$ of	or $\frac{25}{4} < k \ (\le 14)$	B1 [1]				

	Page 7	Mark Scheme		Syllabus	Paper		
		IGCSE – October/Nove	mber 2013		0606	11	
9	(a) $12x^2\ln(2$	$2x+1)+4x^3\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]		differentiation of a correct produce ach error		
	(b) (i) <u>dy</u>	$\frac{1}{x} = \frac{(x+2)^{\frac{1}{2}} 2 - 2x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	quotient	
		$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1		correct unsimplified or attempt to simpli		
	=	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for given a	correct simplificationswer	on to obtain the	
	Or : $\frac{dy}{dx} = 2x \left(\int_{0}^{0} \frac{dy}{dx} \right)$	$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}} + (x+2)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{-\frac{1}{2}}$	product	
	$= \frac{x}{x}$	$(x+2)^{-\frac{3}{2}}(2(x+2)-x)$ (x+4) (x+2)^{\frac{3}{2}}	DM1 A1	DM1 fo	correct unsimplified or attempt to simpli correct simplification nswer	fy	
	(ii) $\frac{10x}{\sqrt{x+2}}$ ((+ c)	M1,A1 [2]	A1 com	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ or $\frac{2x}{\sqrt{x+2}}$		
	(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$		M1		correct application to (b)(ii)	of limits in their	
		$=\frac{40}{3}$	A1 [2]				

Page 8	Mark Scheme			Syllabus	Paper	
	IGCSE – October/Nove	mber 2013		0606	11	
10 (i) $\sqrt{20}$ or 4.	47	B1 [1]				
(ii) Grad <i>AB</i> =	M1	M1 for	attempt at a perp g	gradient		
⊥line y	y - 4 = -2(x - 1)	M1, A1	M1 for attempt at straight line equation, must be perpendicular and passing through <i>B</i> .			
(y = -2x +	- 6)	[3]	-	ow unsimplified		
$(x-1)^2 +$	$f C (x, y)$ and $BC^2 = 20$ $(y-4)^2 = 20$ or $f C (x, y)$ and $AC^2 = 40$	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)			
$(x+3)^2 +$	$FC(x, y)$ and $AC^2 = 40$ $(y-2)^2 = 40$	A1	A1 for a correct equation			
Need inte	rsection with $y = -2x + 6$,	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only			
leads to 5. $5y^2 - 40y$	$x^2 - 10x - 15 = 0 $ or -= 0			-		
giving $x =$ and $y =$		DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'			
Or , using v	ector approach:					
$\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$		B1	May be implied			
$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} +$	M1 A1, A1	M1 for correct approach A1 for each element correct				
$\overrightarrow{OC} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} +$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for	each element corre	ect	

Page 9	Mark Schem	Syllabus	Paper	
	IGCSE – October/Nove	ember 2013	0606	11
11 (a) (i) (⁴ 4	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]		
(ii) A ²	${}^{2} = \begin{pmatrix} 16 & 9 \\ 12 & 13 \end{pmatrix}$	B1, B1 [2]	B1 for any 2 correct eler B1 for all correct	nents
	s the inverse matrix of \mathbf{A}^2 $\frac{1}{100} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow through on their	\mathbf{A}^2
(b) det $C = x$ = 2.	$(x-1) - (-1)(x^2 - x + 1)$ $x^2 - 2x + 1$	M1 A1	M1 for attempt to obtain A1 for this correct quadr from a correct det C	
$b^2 - 4ac <$	< 0, 4 – 8 < 0	DM1	DM1 for use of discrimination of the solve using the formula, complete the square in o are no real roots.	or attempt to
No real se	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]	A1 for correct reasoning there are no real roots.	or statement that

	Pag	je 10		Mark Scheme	e			Syllabus	Paper	
				IGCSE – October/Nove	mber	2013		0606	11	
12	(a)	(i)		10) = 299, $f(8) = 191n point at (0, -1) or when y = -1$	M1 B1		M1 for substitution of either $x = -10$ or $x = 8$, may be seen on diagram B1 May be implied from final answer, may be seen on diagram Must have \leq for A1, do not allow x Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.			
			∴ r	ange $-1 \le y \le 299$	A1	[3]				
		(ii)	$x \ge$	0 or equivalent	B1	[1]				
	(b)	(i)	g^{-l}	$(x) = \ln\left(\frac{x+2}{4}\right)$	M1		M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of <i>y</i> .			
			or	$\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[2]	A1 must be in terms of x			
		(ii)	gh($\begin{aligned} x) &= g(1n5x) \\ &= 4e^{1n5x} - 2 \end{aligned}$	M1 A1			correct order correct expression	$4e^{\ln 5x} - 2$	
			20 <i>x</i>	x - 2 = 18, x = 1	A1	[3]	A1 for workin	correct solution fro g	om correct	
				$h(x) = g^{-1}(18)$ n5x = 1n5	M1 A1		M1 for correct order A1 for correct equation			
			lead	ding to $x = 1$	A1		A1 for workir	correct solution fr	om correct	