CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

www.tiremepapers.com

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme		Syllabus	Paper	
	IGCSE – October/November 2012	0606	22	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0606	22

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	Pa	ge 4	Mark Scheme			Syllabus 0606	Paper	
			IGCSE – October/Novembe	IGCSE – October/November 2012			22	
1		-5 = 3x - 1	13	M1	Equa	ate and attempt to s	olve	
		– 4.5 o.e.		A1	_			
		-5 = 3x + 1	13	M1	Equa			
		0.8 o.e.		A1	Mar	k final answers		
	OR Sau	are and Eq	unto	[4] M1	Poth	expressions must	hava 2 tarma	
			6(=0) o.e.	A1		e terms		
		(-4)(2x+9)		M1		orise or formula of	three term	
		0.8 and $x =$		Al		ratic.		
	OR				1 A			
	Plot	y = 7x +	5	M1		e and intercepts m		
	Plot	y = 3x - x	13	M1	Shap	e and intercepts m	ust be correct	
	x = 0			A1				
	x = -	-4.5		A1				
	(dA	1), .	0_	B1,B1				
2	$\left(\frac{1}{dr}\right)$	$\left(\frac{1}{r}\right) = 4\pi r + 1$	υπ	M1		d <i>A</i>		
					1 hei	$r \frac{dA}{dr}$		
	Use	$\frac{dt}{dt} = \frac{dt}{dr} \times \frac{dt}{dr}$	$\frac{\mathrm{d}r}{\mathrm{d}t}$ with $r = 6$					
	6.8	ar ar		A1	Rou	nds to 6.8		
				[4]				
3	Rea	rrange to a	$x^{2} + bx + c = 0$	M1				
-		(-1)(2x-7)		M1	Fact	orise or formula		
		and 3.5		A1				
	0.5	< x < 3.5		A1	not ≤	≤ mark final stater	nent.	
				[4]				
4	(i)	$8(2^3)$ or 5	56	B1				
		8 (2 ³) or 5 -448(x^5)		B1	Marl	k final answer		
				[2]				
	(ii)	$1120(x^4)$		B1				
		-	120 and their –448 used	M1				
		$1792(x^5)$		A1				
				[3]				
5	(i)		of 6, 5, 4, and 3 only	M1	Num	bers listed but not	added.	
		360		A1				
	(#)	Evidanas	of 2 × 2 for outside digits	[2] B1				
	(11)		of 2×3 for outside digits of 4×3 for inside digits	B1 B1	⁴ P ₂ 1	sed correctly.		
		Evidence 72		B1 B1	120	sou concerny.		
		14		[3]				
6	(i)	Evpress	s powers of 2	M1	A . 1		4x-4v	
U	(I)		reaches $3x + 2y = 6$	A1 AG	At le	east one : 2^{6y-9} or 2	o.e.	
		concorry		[2]				
	(ii)		s powers of 5	M1	Both	correct 5^2 and 5^{3x}	⁻⁶ o.e.	
		y = 3x - 4		A1	Thre	e terms		
		Attempt t	o solve simultaneous equations	M1	Equa	ations must be linea	ır	
		$x = \frac{14}{9}$ and	$1v = \frac{2}{2}$	A1	Acce	ept decimals that ro	und to correct 3sf	
		- 9 un	3	[4]		•		

Page 5		ge 5	Mark Scheme			Syllabus	Paper	
			IGCSE – October/Novembe	er 2012		0606	22	
7	(i)	$\sec^2 4x$		M1	One	term only		
	()	× 4		A1		, and the second s		
	(ii)	<i>x</i> +		[2] B1				
		tan4x $\div 4$		M1 A1	No additional terms isw			
				[3]				
	(iii)	Correct us	se of limits	M1	Expression must have 2 integrated terms in x from (ii).			
		$k = \frac{1}{8}$		A1 [2]	Rounds to 0.125. Accept $\frac{\pi}{8}$ or 0.125π			
8	(i)	$(b=)\frac{7-4}{8-2}$	$\frac{4}{2} = \left\lceil \frac{1}{2} \right\rceil$	B1 M1		ling gradient ling y intercept		
		$(\lg a)=3$		M1	lgy =	$= c + m \lg x$ is suffic	ient	
		$\lg y = \lg a$ or $\lg y = 3$	$+ b \lg x \text{ or } \lg y - 4 = b(\lg x - 2) + 0.5 \lg x$					
		<i>a</i> = 1000		A1				
		y = 1000x	$x^{0.5}$ or $1000\sqrt{x}$	A1 [5]				
	(ii)	<i>m</i> = 1		B1				
	(iii)	<i>c</i> = 6		[1] B1				
				[1]				
9	(i)	420 a	80 (40 OR (40) (420 (420) (40) (420) (40) (40) (40) (40) (40) (40) (40) (4	B1	Corr	rect triangle		
		$\frac{\sin \alpha}{\alpha} = \frac{1}{2}$		M1		of sine or cosine ru	ale in any triangle heir <i>v</i> and an angle.	
		80 er = 7.02	420	A1	with	some of 80,420, u	lien <i>v</i> and an angle.	
		$\alpha = 7.03$ Bearing	$\frac{00}{223}(230-\alpha)$	A1√* [4]				
	(ii)	v sin <i>their</i>	$\frac{420}{\sin 40}$	M1	Use of sine or cosine rule in any triangle with 80 or 420 or both.			
		v = 478	1000	A1				
		Use time	$e^{\frac{1000}{v}}$	M1	v calculated from a triangle			
		2.09 hou	rrs or 2 hours 5minutes	A1 [4]	Units required			

Page 6		Mark Scheme	Syllab		Paper	
		IGCSE – October/November 2012		0606	i	22
10 (1)	T			X C		
10 (i)		$r^{2}(1-r)$	M1	Increase of pow	ers seer	n at least once
	v = 4t - t Use $t = 0$	(+c) , $v = 12$ to find $c = 12$	A1 B1			
	v = 4t - t	$r^2 + 12$ to find $c = 12$	M1	Solve three term	auadra	atic
	t = 6		Al	Do not penalize		
			[5]			
(ii)	-	e to find <i>s</i>	M1	Increase of pow	ers on a	t least 2 terms
	$s = 2t^2 - $	$\frac{t^3}{1} + 12t$	A1√	3 terms		
		3	A1	cao		
	<i>s</i> = 72		[3]			
11 (a)	$\tan x = -$	2.25	B1			
(")	114		B1	Rounds to 114.0	isw	
	294		B1√	Their 114 + 180		an function isw
			[3]			
(b)	Uses co	$\sec y = \frac{1}{\sin y}$	B1	Seen anywhere		
	-	uadratic in $\sin y : 12\sin^2 y + \sin y - 1$	M1	Must be 3 terms		
	[=0]	$1/(2 \sin x + 1)[-0]$	MI	Factorics	1C	2 4
	$(4\sin y - 14.5 \text{ and})$	$1)(2\sin y + 1)[= 0]$	M1 A1	Any 2 values isv		3 term quadratic.
	165.5 an		A1 A1	The other 2 values		
(\mathbf{c})			[5]			
(c)	$\cos\left(\frac{z}{3}\right)$	$=\frac{3}{5}$	B1			
	$\frac{z}{3} = 0.92$	7	M1	Solves their equ	ation in	radians
	z =2.78 t	to 2.79 inc	A1	isw		
	<i>z</i> = 16.1		A1	Rounds to isw		
			[4]			
12 EITH	IER					
	1		M1	Integrate : $e^{-\frac{x}{4}}$ s	seen	
(i)	$y A e^{-\frac{1}{4}x} $ (+c)	A1	integrate . e		
	A = -4		DM1			
	Substitute					
	<i>y</i> =14-4	$e^{-\frac{1}{4}x}$	A 1			
	y = 14 - 4e 14 - 4e	e	A1 A1			
	14 – 40		[5]			
(ii)	Tangent a	t A is y - 10 = x	B1			
()		tangent at B is e	B1			
	T ·		D1 Å	XX7:41.41 · · · ·		
	-	t B is $y+4e-14=ex+4e$	B1√ [^]	With their gradie		answer to (1)
	-	ations of tangents	M1	Two linear equa	uons	
	$x = \frac{4}{1-e}$	o.e.	A1			
	1-e		[5]			
			[-]			

Pa	ge 7	Mark Scheme	9	Syllabus	Paper
		IGCSE – October/Nove	IGCSE – October/November 2012		22
12 OR					
(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	$e^{-\frac{1}{3}x}$	M1	$Ae^{-\frac{x}{3}}$ only one term	
	at $(0, 9)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	A1		
	Grad nor	mal = 3	M1	Use of $m_1 m_2 = -1$	
	Point Q i	s (-3,0)	A1 [4]	Condone $x = -3$	
(ii)		tangle 24 + 3e (32.1)	M1	Their $3 \times \text{their}(8 + e)$	
	$\int_{-3}^{0} 8 + e^{-1}$	$\frac{x^3}{3}dx$	M1	Integrate: $8x$ and $e^{-\frac{x}{3}}$ set	een
	$=\left[8x-3e^{2}\right]$	$\left[e^{-\frac{x}{3}}\right]_{-3}^{0}$	A1		
	21+3e (2	9.1)	M1	Correct use of limits th	eir -3 and 0
	Shaded a	rea =3	A1		
			A1		
			[6]		