MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE– October/November 2009	0606	01

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

© UCLES 2009

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE– October/November 2009	0606	01

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

© UCLES 2009

	Page 4	Mark Scheme: Teachers			Syllabus	Paper
		IGCSE– October/November 2009			0606	01
1		$ +7a^{2} + 16 = 0 a^{3} = -8, a = -2 $	M1 A1 [2]	M1 for use of $x = a$ and equated t maybe implied		
	(ii) $2\left(-\frac{1}{2}\right)^3$	$-7\left(-\frac{1}{2}\right)^2 - 14\left(-\frac{1}{2}\right) + 16$	M1		substitution of x	$=-\frac{1}{2}$ into their
	= 21		A1 [2]	expressi	on or $f(x)$	
2	(i) (6 3 1	(ii) $2)(5) (43)$	B1, B1	B1 for order	each matrix, mu	st be in correct
	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{pmatrix} 2 \\ 3 \\ 0 \\ 7 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 43 \\ 32 \\ 35 \\ 22 \end{pmatrix} $	[2] B2, 1, 0 [2]	-1 for ea	ach error	
3	$4(2k+1)^2 = 4(4k^2+3k-1)^2 = 4(4k^2+3k$	0	M1 A1		use of $b^2 - 4ac'$ quadratic express	ion
	leading to $k =$	$\frac{1}{4}, -1$	M1 A1 [4]		correct attempt at oth values	solution
4	$(13-3y)^2 + 3y$ (or $x^2 + \frac{(13-x)^2}{3}$		M1	M1 for e	eliminating one va	ariable
	$6(2y^2 - 13y + 2)$ (or 2(2x ² - 13x)	(21) = 0	A1	A1 for c	orrect quadratic	
	(2y-7)(y-3) (or $(2x-5)(x-3)$	= 0 (-4) = 0	DM1	DM1 f quadrati	or correct atten	mpt at solving
	$y = 3 \text{ or } \frac{7}{2} \left(x = 1 \right)^{1/2}$	2)	A1,A1	A1 for e	ach correct pair	
	$(or x = 4 or \frac{5}{2})$	$\left(y = \frac{7}{2} \text{ or } 3\right)$	[5]			
5	(i) $(3+\sqrt{2})^2$	$+\left(3-\sqrt{2}\right)^2=22$	M1		use of Pythagoras ecimals M1, A0	
	$AC = \sqrt{22}$	$\overline{2}$	A1 [2]			
	(ii) $\tan A = \frac{3}{3}$	$\frac{-\sqrt{2}}{+\sqrt{2}}$	M1	M1 for c	correct ratio	
	$\frac{\left(3-\sqrt{2}\right)\left($	$\left(\frac{3}{3} - \sqrt{2}\right) = \frac{11 - 6\sqrt{2}}{7}$	M1, A1	M1 for r	rationalising 2 terr	m denominator
			[3]			

	Pa	ge 5	Mark Scheme: Teachers' version			Syllabus	Paper	
			IGCSE– October/November 2009			0606	01	
6	(i)	$3x^2 - 10x$ $(3x+2)(x$		M1	M1 for	M1 for attempt to solve quadratic		
		critical va	lues $-\frac{2}{3}$, 4	A1	A1 for c	A1 for critical values		
		$A = \{x : -$	$\frac{2}{3} \le x \le 4\}$	√A1 [[3] Follow	Follow through on their critical values.		
		$B = \{x : x \\ A \cap B = \{x \in A \}$	$\geq 3 \}$ x: 3 \le x \le 4 }	B1 B1		B1 for values of <i>x</i> that define <i>B</i> . B1 (beware of fortuitous answers)		
7	(i)	$^{13}C_8 = 128$	37	M1, A [1 M1 for [2]	correct C notation		
	(ii)	6 teachers	, 1 student : 6 , 2 students ${}^{7}C_{6} \times {}^{6}C_{2}$: 105 , 3 students ${}^{7}C_{5} \times {}^{6}C_{3}$: 420	B1 B1 B1 B1	4]			
8	(i)	When $t =$	0, <i>N</i> = 1000	B1 [[1]			
	(ii)	$\frac{\mathrm{d}N}{\mathrm{d}t} = -1$	$000ke^{-kt}$	M1	M1 for	differentiation		
		when $t = 0$	$\frac{\mathrm{d}N}{\mathrm{d}t} = -20 \text{ leading to}$	DM1	DM1 fo	r use of $\frac{\mathrm{d}N}{\mathrm{d}t} = \pm 2$	0	
		$k = \frac{1}{50}$		A1 [[3]			
		500 = 100		M1	M1 for using ha	to for attempt to for alf life	mulate equation	
		$t = -50 \ln \frac{1}{2}$	$\frac{1}{2}$ leading to 34.7 mins	M1 A1		a correct attempt a of fortuitous answ		
9	(i)	20 × -2(1	$(-2x)^{19}$	B1,B1	B1 for 2 B1 for -	20 and $(1 - 2x)^{19}$ -2 provided $(1 - 2x)^{19}$	$(x)^{19}$ is present	
	(ii)	$x^2\frac{1}{2} + 2x$	ln x	M1 B1		attempt to differe	ntiate a product.	
		ISW		A1	B1 for - A1 all o	$\frac{1}{x}$ ther terms correct		
	(iii)	$\frac{x(2 \sec^2)}{\text{ISW}}$	$\frac{2x+1)-\tan(2x+1)}{x^2}$	M1 B1 A1	B1 for c	attempt to differer lifferentiation of ta ther terms correct	an(2x+1)	

	Page	6 Ma	ark Scheme: Teachers	' version		Syllabus	Paper	
		IG	IGCSE– October/November 2009			0606	01	
					[
10	at) $\frac{dy}{dx} = 9x^2 - 4x + 2$ at P grad = 7 tangent y - 3 = 7(x - 1)			M1 for differentiation A1 for gradient = 7 and $y = 3$ DM1 for attempt to find tangent equation			
	lea (x	$Q, 7x - 4 = 3x^{3} - 2x^{2}$ adding to $3x^{3} - 2x^{2} - 4$ $-1)(3x^{2} + x - 4) - 0$ -1)(3x + 4)(x - 1) = adding to $x = -\frac{4}{3}, y =$	5x + 4 = 0 $= 0$	M1 B1 DM1 DM1 A1 [5]	equation B1 for re DM1 att DM1 for	M1 for equating tangent and curve equations B1 for realising $(x - 1)$ is a factor DM1 attempt to factorise cubic DM1 for attempt to solve quadratic A1 for both		
11	=	$\frac{\sin \theta + \cot \theta = \frac{\sin \theta}{\cos \theta} + \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta}}{\frac{1}{\cos \theta \sin \theta}}$	$-\frac{\cos\theta}{\sin\theta}$	B1 B1 B1 [3]	B1 for u B1 for si	ttempt to obtain of se of an appropria implification follows for alterna	te identity	
(b)	$\frac{\sin \frac{\sin 2\pi}{\cos 2\pi 2}}{\sin 2\pi 2}$	$n x = 3\sin x$ $\frac{n x}{\cos x} = 3\sin x$ $n x - 3\sin x \cos x = 0$ adding to $\cos x = \frac{1}{3}$, s $= 70.5^{\circ}, 289.5^{\circ} \text{ and } x$ $= 70.5^{\circ}, 289.5^{\circ} \text{ and } x$	$\sin x = 0$ $x = 180^{\circ}$	M1 A1√A1 B1 [4]	attempt	to solve their $x = 70.5^{\circ}$	$\frac{n x}{\cos x}$ and correct	
	2(0 2 c (2 1ea	$\cot^2 y + 3 \operatorname{cosec} y = 0$ $\csc^2 y - 1) + 3 \operatorname{cosec} y - 2$ $\csc^2 y + 3 \operatorname{cosec} y - 2$ $\operatorname{cosec} y - 1)(\operatorname{cosec} y - 2$ adding to sin $y = -\frac{1}{2}$, $\operatorname{cosec} y = 3.67, 5.76$	ecy = 0 2 = 0 + 2) = 0	M1 M1 A1,A1 [5]	M1 for a M1 for d	use of correct iden attempt to solve qu lealing with cosec follows for alterna	adratic /cot	

Pa	age 7 Mark Scheme: Teachers' version			Syllabus	Paper	
	IGCSE– October/November 2009				0606	01
				1		
	EITHER (i) $\pi r^2 h = 1000$, leading to $h = \frac{1000}{\pi r^2}$			M1 for attempt to use volume		
	$A = 2\pi rh + 1$ leading to $A = 2\pi r^2 + 1$	given answer	B1 A1 [2]	B1 for $A = 2\pi rh + 2\pi r^2$ GIVEN ANSWER 2] M1 for attempt to differentiate given A A1 all correct DM1 for solution = 0		
(iii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = 4\pi r$ when $\frac{\mathrm{d}A}{\mathrm{d}r}$	$r = \frac{2000}{r^2}$ = 0, $4\pi r = \frac{2000}{r^2}$	M1 A1 DM1			
(iv)	$\frac{dr}{dt^2 A} = 4\pi$	<i>r</i> = 5.42	A1 [4]			ive method or
(1v)	Car	r = 5.42 so min value	M1 A1 B1	M1 for second derivative method or gradient method' A1 for minimum, must be from correct work		
			[3]			
12 OR (i)	$y = x + \cos \frac{dy}{dx} = 1 - \cos $		M1 A1	M1 for a	ttempt to differen	tiate
	when $\frac{dy}{dx}$	$= 0, \sin 2x = \frac{1}{2}$	DM1	DM1 for	r setting to 0 and a	attempt to solve
		$x = \frac{\pi}{12}, \frac{5\pi}{12}$	DM1 A1,A1 [6]	[6] M1 for attempt to integrate		
	$\frac{\pi}{12}$	$x + \cos 2x.\mathrm{d}x$	M1			
	$=\left[\frac{x^2}{2} + \frac{1}{2}\right]$	$\frac{1}{2}\sin 2x \bigg]_{\frac{\pi}{12}}^{\frac{5\pi}{12}}$	A1,A1 DM1			
$=\frac{\pi^2}{12}$			A1 [5]	(Trig ter	ms cancel out)	