MARKSCHEME

May 2014

SPORTS, EXERCISE AND HEALTH SCIENCE

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Sports, Exercise and Health Science SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [30 marks] and ONE question in Section B [20 marks]. Maximum total = [50 marks].

Markscheme format example:

Question		Answers	Notes	Total	
$\mathbf{5}$	c	ii	this refers to the timing of the movements OR the extent to which the performer has control over the timing of the movement \checkmark external paced skills are sailing/windsurfing/receiving a serve \checkmark internal paced skills are javelin throw/gymnastics routine \checkmark	$\mathbf{1}$ max	

1. Each row in the 'Question' column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the 'Total' column.
3. Each marking point in the 'Answers' column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by 'max' written after the mark in the 'Total' column. The related rubric, if necessary, will be outlined in the 'Notes' column.
5. An alternative wording is indicated in the 'Answers' column by a slash (/). Either wording can be accepted.
6. An alternative answer is indicated in the 'Answers' column by ' $\boldsymbol{O R}$ ' on the line between the alternatives. Either answer can be accepted.
7. Words in angled brackets «» in the 'Answers’ column are not necessary to gain the mark.
8. Words that are underlined are essential for the mark.
9. The order of marking points does not have to be as in the 'Answers' column, unless stated otherwise in the 'Notes' column.
10. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the 'Answers' column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect).
11. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
12. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script. 'ECF acceptable' will be displayed in the 'Notes' column.
13. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the 'Notes' column.

SECTION A

	d		Group 1/rural adolescents scored better in four of the six tests/majority of tests/ $\dot{\mathrm{V}} \mathrm{O}_{2}$ max, Standing broad jump, Hand grip strength, bent arm hang OWTTE \checkmark based on the results one could argue that Group 1/rural adolescents are fitter overall \checkmark group 2/urban adolescents were better at speed-agility, flexibility \checkmark group 1/rural adolescents scored better in health-related components of fitness (compared to Group 2) OR three health related components OR muscular strength and muscular endurance and aerobic capacity OWTTE \checkmark group 1 and 2 score the same on skill related components \checkmark each group had scored higher than the other group in some components \checkmark there may well be other components not tested here where Group 2/urban adolescents would score higher so the result could be deemed undetermined \checkmark group 1/rural adolescents have on average a higher standard deviation compared to Group 2 in connection with the hypothesis \checkmark Although the data presented supports the hypothesis, the difference between the two groups may not be significant.	Accept answer in the converse. Accept answers in the converse	3 max
	e	i	$\dot{\mathrm{V}} \mathrm{O}_{2}$ max \checkmark		1
	e	ii	hand grip strength \checkmark		1
	f		joint action: plantar flexion \checkmark type of muscle contraction: calf/back of lower leg contract concentrically \checkmark gastrocnemius/soleus is/are the agonist/ prime mover OR tibialis anterior is relaxing (and acting as the antagonist) \checkmark	Do not accept isotonic as a sole answer.	3

2.	a		the controlled release of energy in the form of ATP (from organic compounds in cells) OWTTE \checkmark	Mention of ATP or adenosine triphosphate should be included. Accept glucose and oxygen required to produce carbon dioxide, water and ATP.	1
	b		strengths: the ATP-CP system allows ATP to gain a phosphate molecule very quickly/almost instantaneously \checkmark the ATP-CP system recovers very quickly also \checkmark the ATP-CP system does not require oxygen \checkmark the CP is readily available \checkmark provides energy for explosive high intensity exercise/movement \checkmark no fatiguing by-products \downarrow CP can itself be quickly re-synthesized so recovery time is quick \checkmark weaknesses: the ATP-CP system is used up very quickly up to 10 seconds/limited supply of CP \checkmark to continue with all-out effort beyond 10 seconds an additional energy source other than the ATP-CP system is required \checkmark for repeated bouts of all-out effort there needs to be sufficient time for recovery of this system \checkmark	Award [1 max] for just a description of the system without a strength or a weakness. Award [2 max] for strengths and [2 max] for weaknesses.	3 max

3.	a		vastus intermedius	Accept "vastus intermedialis".	1
	b		type II/type IIa/IIb/Fast Twitch/Fast Glycolytic	Accept II as 2	1
	c		acetylcholine «ACh»: changes an electrical/neural impulse into a chemical stimulus «at the motor end plate»/transmits nervous impulse across synapse \checkmark increases membrane permeability sto sodium and potassium ions» \downarrow helps spread the impulse over the entire muscle fibre \checkmark the action of ACh allows the muscle to contract \checkmark cholinesterase: degrades/breaks down ACh «within 5 milliseconds» immediately repolarizes the membrane \checkmark «action of cholinesterase» allows the muscle to relax \downarrow	Award [2 max] for acetylcholine. Award [2 max] for cholinesterase. Do not exceed [3 max] in total.	3 max
	d		variations in $\dot{\mathrm{V}} \mathrm{O}_{2}$ max during different modes of exercise reflect the quantity of activated muscle mass OR treadmill running involves greater muscle mass compared to arm ergometry \checkmark $\dot{\mathrm{V}}{ }_{2}$ max measured (on the same subjects) during treadmill running produces higher values compared with arm ergometry OR generally, with arm ergometry aerobic capacity of a person reaches only about 70% of treadmill $\dot{\mathrm{V}}_{2} \max \checkmark$ skill level/training status/experience can increase the values for both \checkmark	Accept in the converse Accept in the converse	2 max

4.	a	1. cognitive/verbal 2. associative/motor \checkmark	Both required to award [1].	1 max
	b	physical proficiency abilities consist of gross movements/use of large muscle groups «eg physical factors» \downarrow perceptual motor abilities are a combination of how we make sense of our environment (perception) and how we act (motor control) «eg psychomotor factor, \checkmark	Award [1 max] Award [1 max] Examples will only be accepted in conjunction with a suitable definition.	2

c	for example physical maturation: young learners have difficulty in focusing on important cues, difficulty in processing information \checkmark young learners make a large number of errors \checkmark as learners mature, more motor plans are generated \checkmark for example physical fitness: size, shape and level of fitness may assist in learning \checkmark one learner may have more flexibility and strength than the other \checkmark a learner has an ability to make decisions more effectively if they are not fatigued \checkmark for example motivation: per factor. can be related to a person’s inner drive «intrinsic» or external factors such as trophies «extrinsic» the strength of a learner’s drive to achieve is «very» individual \checkmark motivation is also linked to a person’s state of arousal \checkmark for example individual difference of coaches: a coach’s teaching style «command/reciprocal» may appeal to one learner but not the other \checkmark the quality and type of feedback received \checkmark for example age: physical maturation/experience/emotional maturity will affect the progress of a learner \checkmark for example difficulty of task: progress will be slowed if the task is too difficult for the learner \checkmark this may have an impact on the motivation of the learner \checkmark	max	

continued ...

| c | for example teaching environment:
 a safe teaching environment/limited distractions/small group
 learning/attention/facilities and space available for learning \checkmark
 for example time/volume of practice:
 The longer amount of time a person has to practice the more likelihood
 they will increase the rate of learning a skill \checkmark | |
| :--- | :--- | :--- | :--- | :--- |

SECTION B

Question		Answers	Notes	Total
5.	a	smooth \checkmark cardiac \downarrow skeletal \checkmark	Award [2] for three correct responses. Award [1] for two correct responses.	2 max
	b	epimysium is the outer surrounding layer (which consists mainly of collagen fibres) $\sqrt{ }$ perimysium surrounds bundles of muscle fibres \checkmark muscle fibres which are surrounded in a layer called the endomysium \checkmark these all connect to a tendon which attaches to the bone to allow muscles to move $\sqrt{ }$ the muscle cell/fibre is composed of smaller units called myofibrils \checkmark myofibril is composed of contractile components (protein filaments) known as myosin and actin \checkmark sarcomere is a basic/functional unit of the muscle cell \checkmark	Marks are not awarded for reference to striped/striated appearance.	4 max

e	initial stages of oxygen debt/alactacid stage: removal of $\mathrm{CO}_{2} \checkmark$ replenishment of myoglobin stores with oxygen \checkmark replenishment of muscle phosphagens/ATP/ PC stores \checkmark later stages of oxygen debt/lactacid stage: removal of lactic acid \checkmark replenishment of glycogen stores \checkmark causes of EPOC: re-synthesis of ATP and PCr \checkmark re-synthesis of blood lactate to glycogen \checkmark oxidation of blood lactate to energy metabolism \checkmark restoration of oxygen to blood/tissue fluids/myoglobin \checkmark the effects of elevated core temperature \checkmark		

6.	a	i	when a force acts upon a mass, the result is acceleration of that mass/force $=$ mass x acceleration OR acceleration is proportional to the force acting upon the mass and inversely proportional to the mass of the object OWTTE \checkmark	Do not accept $f=m \times a$	1
	a	ii	the third law states: for every action, there is an equal and opposite reaction \checkmark must push backwards and downwards with large forces on to the blocks (action force) \downarrow according to Newton's third law, the blocks will push back with the same force, but in the opposite direction «forwards and upwards» (reaction force) \checkmark as the blocks are connected to the ground «which has a much larger mass than the athlete» the ground will not move backwards, but the athlete will move forwards and upwards out of the blocks \checkmark		2 max

| c | at rest muscles receive approximately 20% of blood flow, organs receive
 approximately $80 \% \checkmark$
 during exercise this increases to more than 80% of blood flow at the
 muscles and a drop of approximately 20% at the organs \checkmark
 at rest the blood will be more evenly distributed to regions such as brain,
 stomach, kidneys, muscles \checkmark
 regions such as the stomach, kidneys will require relatively less during the
 race \checkmark
 regions such as the heart, lungs and skin will require greater flow during
 the race \checkmark
 vasodilation increases at regions requiring greater blood
 flow/vasoconstriction increases at regions not requiring blood flow \checkmark
 as the athlete is finishing the race the working muscles will be demanding
 the greatest percentage of their total body flow \checkmark | 4 max |
| :--- | :--- | :--- | :--- | :--- |

| d | breathing in:
 external intercostal muscles contract \checkmark
 OR
 rib cage moves upwards and outwards \checkmark
 diaphragm flattens/contracts \checkmark
 additional muscles can also be involved such as the trapezius,
 sternocleidomastoid/scalene/pectoralis minor/back muscles \checkmark
 thoracic cavity volume increases/lungs increase in size/capacity \checkmark
 thoracic cavity pressure decreases (therefore air rushes in) \checkmark
 air rushes in from high pressure to low pressure/inhalation continues as
 long as the pressure difference exists \checkmark | Award [3 max] for breathing in and
 $[3$ max] for breathing out. |
| :--- | :--- | :--- | :--- | :--- |
| breathing out:
 external intercostal muscles relax \checkmark
 internal intercostal muscles contract
 OR
 rib cage moves down and inwards actively \checkmark
 diaphragm relaxes \checkmark
 additional muscles required when working during high intensity exercise
 would include abdominals/rectus abdominus/external obliques (which act
 to force air out faster) \checkmark
 thoracic cavity volume decreases \checkmark
 thoracic cavity pressure increases (therefore air is forced out) \checkmark
 Depth and rate of breathing increase during high intensity exercise due to
 chemoreceptors/proprioreceptors/stretch receptor stimulation \checkmark | $\mathbf{6 ~ m a x ~}$ | |

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { e } & \begin{array}{l}\text { transports oxygen in the red blood cells } \checkmark \\ \text { transports carbon dioxide in the red blood cells } \checkmark \\ \text { carries oxygen from the lungs which has diffused across the tissue } \\ \text { membranes (down a concentration gradient) } \checkmark \\ \text { carries carbon dioxide from the working tissues to the lungs to be expired } \checkmark \\ \text { carries oxygen from the lungs to the working tissues to be used } \checkmark \\ \text { hemoglobin has a high affinity for oxygen } \checkmark \\ \text { higher amounts of hemoglobin will be found in a trained athlete } \checkmark\end{array} & \mathbf{3 ~ m a x}\end{array}\right\}$

7.	a		specificity: involves the swimmer training the muscles, skills and/or energy systems that are relevant for their sport \checkmark a 200 m swimmer should apply specificity by doing most of the training in the pool \checkmark dry land weights and stretching of the appropriate muscles/movements are useful \checkmark butterfly swimming at an intensity that the swimmer would expect to perform in the actual event \checkmark overload: involves the swimmer training harder/longer/both than they have previously done \checkmark the swimmer should apply overload by manipulating combinations of duration/intensity/frequency \checkmark butterfly swimming at intensities greater than normal to induce adaptation to enable to swim more efficiently/powerfully \checkmark	Award [2 max] per principle.	4 max
	b		a number of subroutines can be put together to make up an executive programme \checkmark subroutines: for example start position - feet up on wall/hands gripping and arms lifting body/spring and backward dive/kicking/arm circumduction/arm rotation \checkmark executive programme: backstroke \checkmark		2 max

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { c } & \begin{array}{l}\text { open loop: } \\ \text { utilized when skills are well learnt } \checkmark \\ \text { utilized when skills are executed quickly } \checkmark \\ \text { skills are completed without feedback } \checkmark \\ \text { all the information for one movement is sent in a single message to the } \\ \text { effectors } \checkmark \\ \text { it will depend on task difficulty and/or level of skill of the performer } \checkmark \\ \text { closed loop: } \\ \text { closed loop is when a skill uses feedback throughout its execution } \checkmark \\ \text { errors are detected and adjustments are made <for example juggling - a } \\ \text { performer detects that there is a change in trajectory and adjusts their } \\ \text { movements to match } \checkmark \\ \text { a memory trace is formed in the performer’s long-term memory which tells } \\ \text { them what to do - that is, the motor programme } \checkmark \\ \text { a perceptual trace is then generated as they perform and this is compared to } \\ \text { the memory trace } \checkmark\end{array} & \text { Award } & & \mathbf{4} \text { max }\end{array}\right\}$

| d | memory:
 memory allows us to benefit from our past experiences \checkmark
 all incoming information is held for a short time in the short-term sensory
 store «STSS»/most of the information in the STSS is lost within about 0.5
 second \checkmark
 incoming information is only retained and processed if it is attended to in
 the short-term memory «STM»
 most/90 \% of all information entering the STM is lost within 10 seconds \checkmark
 retention and passage to the long-term memory are dependent on rehearsal
 that is processed mentally/physically/both \checkmark
 the STM has a small capacity/space limitation \checkmark
 the long-term memory has large capacity/no space limitations \checkmark
 the way we overcome the limited capacity of the short term memory is by
 the use of selective attention \checkmark | Responses should discuss the
 relationship between memory and
 selective attention, not simply
 distinguish between them. |
| :--- | :--- | :--- | :--- | :--- |

| d | selective attention:
 selective attention «SA» operates in the short term sensory store «STSS» \checkmark
 only the relevant information is passed to the short-term memory «TM»
 where it is held for several seconds \checkmark
 information selected to the STM can be determined through previous
 experience and information in the LTM \checkmark
 SA ensures that information overload does not occur and prevents
 confusion as the brain would not be able to cope with streams of
 information \checkmark
 a filtering mechanism operates, which separates the relevant information
 from the irrelevant «noise» information so that athletes concentrate on one
 cue/stimulus for example the ball, position of player in a game of tennis»
 to the exclusion of others \checkmark
 SA is very important when accuracy/fast responses are required \checkmark
 SA can be improved by learning through past
 experience/practice/coaching \checkmark
 which improves a person’s anticipation/interaction with long-term
 memory/memory trace \checkmark | |
| :--- | :--- | :--- | :--- | :--- |

e				Award [1] for each correct row. Accept marking points above in form of a valid example, for example efficiency of technique $-a$ swimmer will move further for each stroke and kick made.	6 max
	Factor	Skilled	Novice		
	consistency	high	low \checkmark		
	accuracy	high	low \downarrow		
	learned nature	good/autonomous	poor/cognitive \checkmark		
	control	high	low \checkmark		
	efficiency	high	low \checkmark		
	fluency	smooth	erratic \checkmark		
	goal direction	good	poor \checkmark		

