

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2017

Physics

Standard level

Paper 3

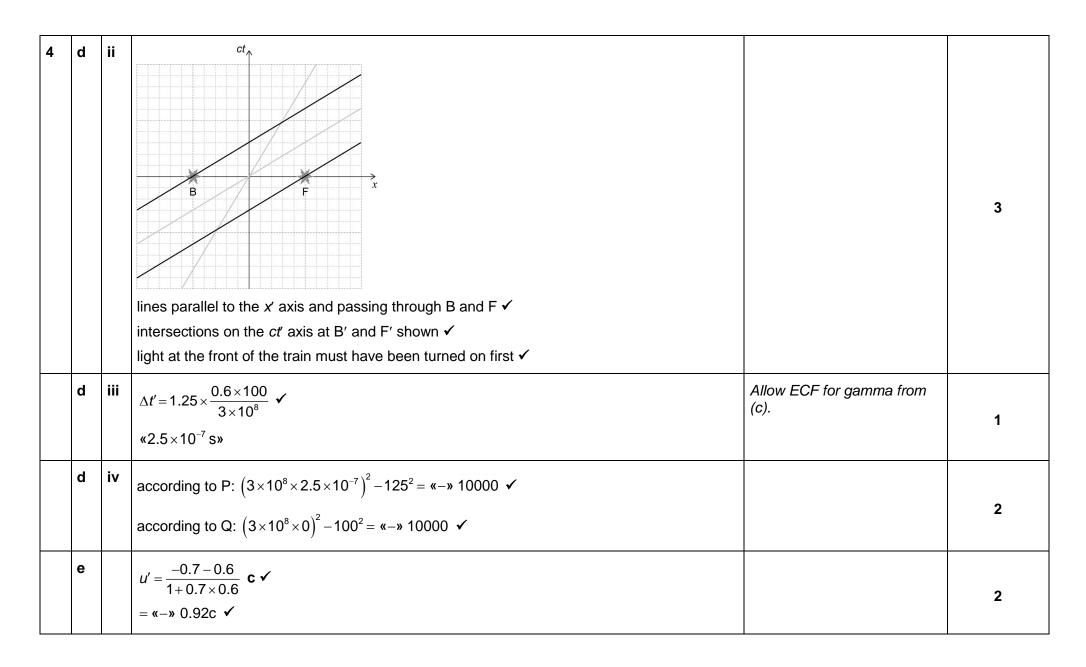
17 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	uesti	ion	Answers	Notes	Total
1	а		in order to keep the temperature constant ✓ in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE ✓	Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.	1 max
	b		recognizes <i>b</i> as gradient \checkmark calculates <i>b</i> in range 4.7×10^4 to 5.3×10^4 \checkmark Pam \checkmark	Award [2 max] if POT error in b. Allow any correct SI unit, eg kg s ⁻² .	3
	C		$V \propto H$ thus ideal gas law gives $p \propto \frac{1}{H} \checkmark$ so graph should be «a straight line through origin,» as observed \checkmark		2
	d		$n = \frac{bA}{RT} \text{ OR correct substitution of one point from the graph \checkmark}$ $n = \frac{5 \times 10^4 \times 1.3 \times 10^{-3}}{8.31 \times 300} = 0.026 \approx 0.03 \checkmark$	Answer must be to 1 or 2 SF. Allow ECF from (b).	2

Qı	Question		Answers	Notes	Total
1	е		very large $\frac{1}{H}$ means very small volumes / very high pressures \checkmark		
			at very small volumes the ideal gas does not apply		2
			OR		
			at very small volumes some of the assumptions of the kinetic theory of gases do not hold \checkmark		


Questio	n Answers	Notes	Total
2 a	$g = \frac{4\pi^2 \times 1.60}{2.540^2} = 9.7907 \checkmark$ $\Delta g = g(\frac{\Delta L}{L} + 2 \times \frac{\Delta T}{T}) = \ll 9.7907 \times \left(\frac{0.01}{1.60} + 2 \times \frac{0.005}{2.540}\right) = \gg 0.0997$ OR $1.0 \% \checkmark$	For the first marking point answer must be given to at least 2 dp. Accept calculations based on $g_{max} = 9.8908$ $g_{min} = 9.6913$. $\frac{g_{max} - g_{min}}{2} = 0.099 \approx 0.1$	3
b	hence $g = (9.8 \pm 0.1) \text{ sms}^{-2} \text{ or } \Delta g = 0.1 \text{ sms}^{-2} \text{ solution}$ $\frac{T}{T_0} = 1.01 \text{ solution}$ $\theta_{\text{max}} = 22 \text{ solution} \text{ solution}$	Accept answer from interval 20 to 24.	2

Section B

Option A — Relativity

Q	Question		Answers	Notes	Total
3	а		a set of coordinate axes and clocks used to measure the position «in space/time of an object at a particular time»		
			OR		1
			a coordinate system to measure x,y,z,and t / OWTTE \checkmark		
	b	i	magnetic only 🗸		
			there is a current but no «net» charge «in the wire» 🗸		2
	b	ii	electric only 🗸		
			P is stationary so experiences no magnetic force ✓		3
			relativistic contraction will increase the density of protons in the wire \checkmark		-

Qı	uesti	ion	Answers	Notes	Total
4	а		$\Delta t_{\rm P}$ / observer sitting in the train \checkmark		1
	b		$\gamma = \frac{\Delta t_o}{\Delta t_p} = \ll = \frac{1}{0.30} \approx = 3.3 \checkmark$ to give $v = 0.95c \checkmark$		2
	С		$\gamma = 1.25 \checkmark$ «length of train according Q» = 125/1.25 \checkmark «giving 100 m»		2
	d	i	axes drawn with correct gradients of $\frac{5}{3}$ for <i>ct'</i> and 0.6 for <i>x'</i> \checkmark	Award [1] for one gradient correct and another approximately correct.	1

Qı	uesti	ion	Answers	Notes	Total
5	а	i	$\frac{M}{3}$ vR \checkmark		1
	а	ii	evidence of use of: $L = I\omega = (MR^2 + \frac{M}{3}R^2)\omega$		1
	а		evidence of use of conservation of angular momentum, $\frac{MvR}{3} = \frac{4}{3}MR^2\omega$ \checkmark «rearranging to get $\omega = \frac{v}{4R}$ »		1
	а		initial KE = $\frac{Mv^2}{6}$ \checkmark final KE = $\frac{Mv^2}{24}$ \checkmark energy loss = $\frac{Mv^2}{8}$ \checkmark		3

Qı	Question		Answers	Notes	Total
5	b	i	$\alpha \ll \frac{3}{4} \frac{\Gamma}{MR^2} \approx \frac{3}{4} \frac{0.01}{0.7 \times 0.5^2} \checkmark$ \text{wto give } \alpha = 0.04286 \text{ rads}^{-2} \text{ \text{wto}}	Working OR answer to at least 3 SF must be shown	1
	b	ii	$\theta = \frac{\omega_i^2}{2\alpha} \text{ «from } \omega_f^2 = \omega_i^2 + 2\alpha\theta \text{ ~ } \checkmark$ $\theta \ll \frac{v^2}{32R^2\alpha} = \frac{2.1^2}{32 \times 0.5^2 \times 0.043} \text{ ~ } = 12.8 \text{ OR} 12.9 \text{ ~ } \text{rad} \text{~ } \checkmark$ $\text{number of rotations } \ll \frac{12.9}{2\pi} \text{ ~ } = 2.0 \text{ revolutions ~ } \checkmark$		3

Ques	tion	Answers	Notes	Total
6 a		«a process in which there is» no thermal energy transferred between the system and the surroundings \checkmark		1
b		A to B AND C to D ✓		1
С	i	$T = \frac{PV}{nR} \checkmark$ $T\left(=\frac{512 \times 10^3 \times 1.20 \times 10^{-3}}{0.150 \times 8.31}\right) \approx 493 \text{ «K» } \checkmark$	The first mark is for rearranging.	2
С	ii	$P_{B} = \frac{P_{a}V_{A}}{V_{B}} \checkmark$ $P_{B} = 267 \text{ kPa } \checkmark$	The first mark is for rearranging.	2
d	i	«B to C adiabatic so» $P_B V_B^{\frac{5}{3}} = P_C V_C^{\frac{5}{3}}$ AND $P_C V_C = nRT_C$ «combining to get result» \checkmark	It is essential to see these 2 relations to award the mark.	1
d	ii	$T_{C} = \left(\frac{P_{B}V_{B}^{\frac{5}{3}}}{nR}\right)V_{C}^{\frac{-2}{3}}\checkmark$ $T_{C} = \left(\frac{267 \times 10^{3} \times (2.30 \times 10^{-3})^{\frac{5}{3}}}{0.150 \times 8.31}\right)(2.90 \times 10^{-3})^{\frac{-2}{3}} \approx = 422 \text{ K}$		2
е		the isothermal processes would have to be conducted very slowly / OWTTE \checkmark		1

Option C — Imaging

Qı	Jesti	on	Answers Notes	Total
7	а	i	an image formed by extensions of rays, not rays themselves <i>OR</i> an image that cannot be projected on a screen ✓	1
	а	ii	$\frac{1}{v} = \frac{1}{3.0} - \frac{1}{4.0} \checkmark$ «v = 12 cm»	1
	а	iii	$u = 18 - 12 = 6.0 \text{ (cm)} \checkmark$ $v = -24 \text{ (cm)} \checkmark$ $\left(\frac{1}{f} = \frac{1}{6.0} - \frac{1}{24} \Rightarrow f = 8.0 \text{ (cm)} \checkmark$ $Award [2 max] \text{ for answer of } 4.8 \text{ cm.}$ $Minus \text{ sign required for MP2.}$	3
	а	iv	line parallel to principal axis from intermediate image meeting eyepiece lens at P ✓ line from arrow of final image to P intersecting principal axis at F ✓ object image in objective F final image eye piece	2

Qu	Question		Answers	Notes	Total
7	b	i	object is far away so intermediate image forms at focal plane of objective \checkmark for final image at infinity object must also be at focal point of eyepiece \checkmark «hence 87.5 cm»	No mark for simple addition of focal lengths without explanation.	2
	b	ii	angular magnification = $\frac{85.0}{2.50} = 34$ angular diameter $34 \times 7.8 \times 10^{-3} = 0.2652 \approx 0.27$ «rad»		2
	с		chromatic aberration is the dependence of refractive index on wavelength ✓ but mirrors rely on reflection <i>OR</i> mirrors do not involve refraction ✓ «so do not suffer chromatic aberration»		2

Qu	Question		Answers	Notes	Total
8	а	i	longer distance without amplification ✓ signal cannot easily be interfered with ✓ less noise ✓ no cross talk ✓ higher data transfer rate ✓		2 max
	а	ii	infrared radiation suffers lower attenuation 🗸		1
	b		loss = $10\log \frac{2.4}{15}$ «= -7.959 dB» ✓ length = « $\frac{7.959}{0.30}$ =»26.53 ≈ 27 «km» ✓		2
	с		a thin core means that rays follow essentially the same path / OWTTE \checkmark and so waveguide (modal) dispersion is minimal / OWTTE \checkmark		2

Option D — Astrophysics

Qu	Question		Answers	Notes	Total
9	а	i	stars fusing hydrogen «into helium» 🗸		1
	а	ii	$M = M_{\odot} (4 \times 10^5)^{\frac{1}{3.5}} = 39.86 M_{\odot} \checkmark$ $\ll M \approx 40 M_{\odot} \gg$	Accept reverse working.	1
	а	iii	$4 \times 10^5 = 13^2 \times \frac{T^4}{6000^4} \checkmark$ $T \approx 42000 \text{ «K» } \checkmark$	Accept use of substituted values into $L = \sigma 4\pi R^2 T^4$. Award [2] for a bald correct answer.	2
	а	iv	$4 \times 10^{-11} = 4 \times 10^5 \times \frac{1 \text{AU}^2}{d^2} \checkmark$ $d = 1 \times 10^8 \text{ (AU)} \checkmark$	Accept use of correct values into $b = \frac{L}{4\pi d^2}$.	2
	b		the gravitation «pressure» is balanced by radiation «pressure» \checkmark that is created by the production of energy due to fusion in the core / OWTTE \checkmark	Award [1 max] if pressure and force is inappropriately mixed in the answer. Award [1 max] for unexplained "hydrostatic equilibrium is reached".	2

Question		ion	Answers	Notes	Total
9	С		the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super giant \checkmark		
			the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a supernova \checkmark		3
			the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole \checkmark		

Qu	Question		Answers	Notes	Total
10	а		black body radiation / 3 K ✓ highly isotropic / uniform throughout <i>OR</i> filling the universe ✓	Do not accept: CMB provides evidence for the Big Bang model.	2
	а	ii	$\ll \lambda = \frac{2.9 \times 10^{-3}}{2.8} \approx 1.0 \text{ mm} \neq 4.0 \text{ mm}$		1
	b		the universe is expanding and so the wavelength of the CMB in the past was much smaller \checkmark indicating a very high temperature at the beginning \checkmark		2
	с	i		Award [1 max] for POT error.	2
	С	ii	$z = \frac{R}{R_0} - 1 \Longrightarrow \frac{R}{R_0} = 1.16 \checkmark$ $\frac{R_0}{R} = 0.86 \checkmark$		2