

# Diploma Programme Programme du diplôme Programa del Diploma

# **Markscheme**

## May 2016

## **Physics**

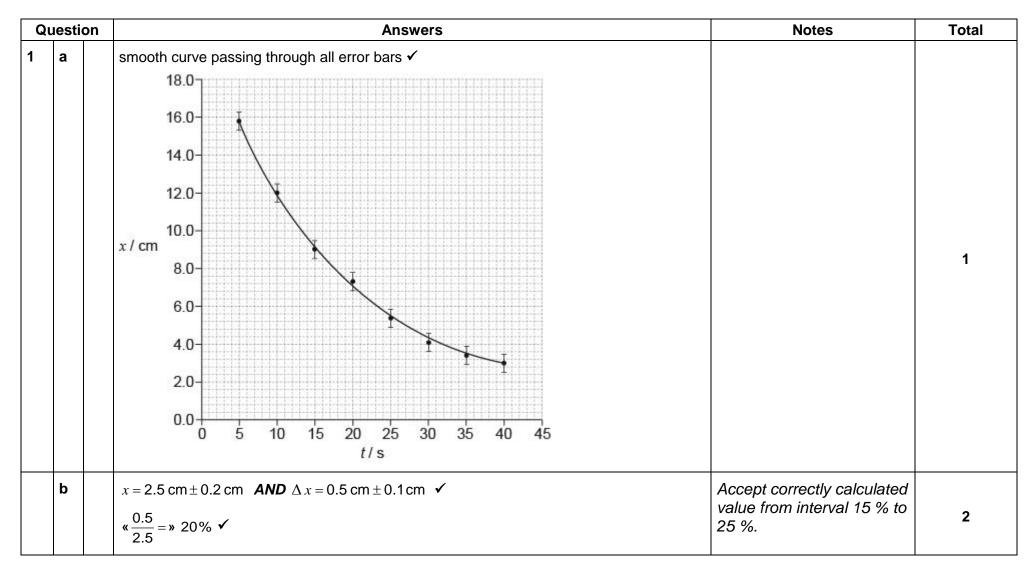
### **Standard level**

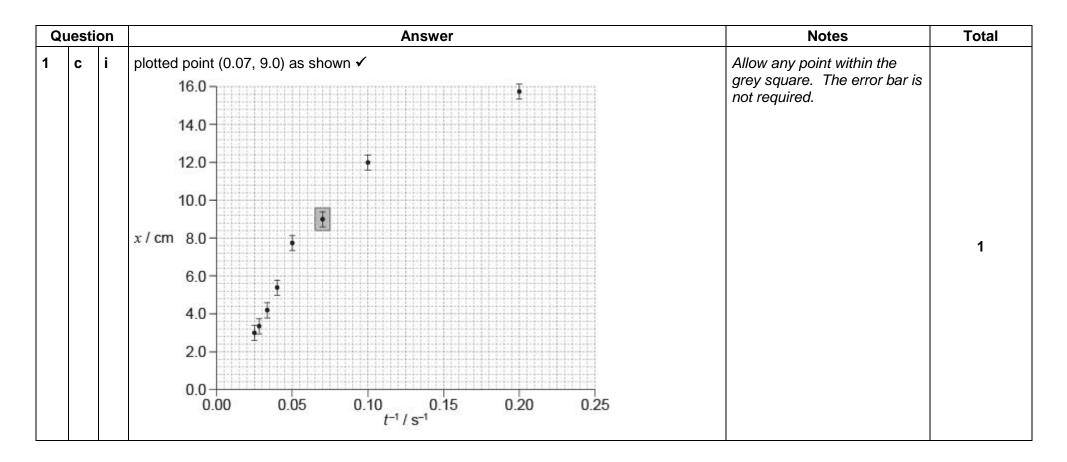
Paper 3



19 pages

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.


#### Subject Details: Physics SL Paper 3 Markscheme


#### Mark Allocation

Candidates are required to answer ALL questions in Section A [15 marks] and all questions from ONE option in Section B [20 marks]. Maximum total = [35 marks].

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick ( $\checkmark$ ) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative wording is indicated in the "Answers" column by a slash (/). Either wording can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "**OR**" between the alternatives. Either answer can be accepted.
- 7. Words in angled brackets « » in the "Answers" column are not necessary to gain the mark.
- 8. Words that are <u>underlined</u> are essential for the mark.
- 9. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.

#### **Section A**

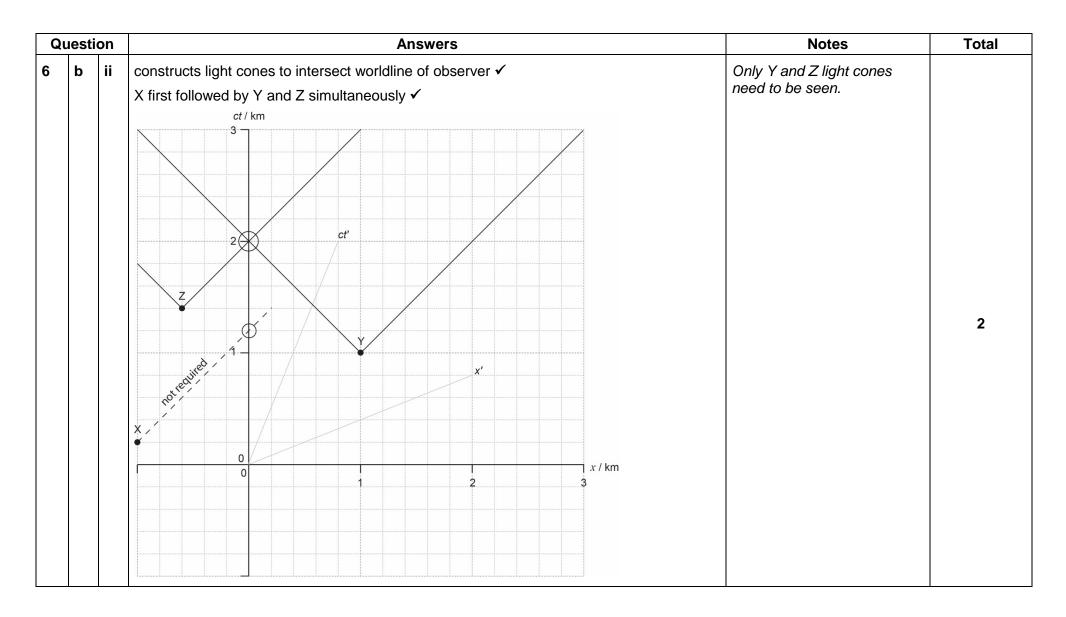




| Qı | Question |    | Answer                                                                                                                        | Notes                             | Total |
|----|----------|----|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|
| 1  | с        | ii | ALTERNATIVE 1<br>$t^{-1}$ from 0.025 s <sup>-1</sup> to 0.04 s <sup>-1</sup> $\checkmark$                                     | Do not allow ECF from MP1 to MP2. |       |
|    |          |    | giving <i>t</i> from 25 to 40 ✓<br>ALTERNATIVE 2                                                                              |                                   | 2     |
|    |          |    | the data do not support the hypothesis $\checkmark$                                                                           |                                   |       |
|    |          |    | any relevant support for the suggestion, eg straight line cannot be fitted through the error bars and the origin $\checkmark$ |                                   |       |

| Q | Question |    | Answers                                                                                                                                                                                                                         | Notes                                                                                        | Total |
|---|----------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------|
| 2 | а        | i  | refractive index = 1.5 ✓                                                                                                                                                                                                        | Both correct value and 2SF required for <b>[1]</b> .                                         | 1     |
|   | а        | ii | fractional uncertainty $x_3 - x_1 = \frac{0.04}{1.15} = 0.035$ <b>AND</b> $x_3 - x_2 = \frac{0.04}{0.76} = 0.053$ <b>✓</b><br>sum of fractional uncertainty = 0.088 <b>✓</b><br>«uncertainty = their RI × 0.088» = 0.1 <b>✓</b> | Accept correct calculation<br>using maximum and<br>minimum values giving the<br>same answer. | 3     |
|   | b        | i  | systematic error 🗸                                                                                                                                                                                                              | Accept "zero error/offset".                                                                  | 1     |
|   | b        | ii | calculated refractive index is unchanged ✓<br>because both numerator and denominator are unchanged ✓                                                                                                                            | Accept calculation of refractive index with 0.05 subtracted to each <i>x</i> value.          | 2     |
|   | с        |    | numerator and denominator will be 10 times larger so refractive index is unchanged ✓ relative/absolute uncertainty will be smaller ✓                                                                                            | "Constant material" is not enough for MP1.                                                   | 2     |

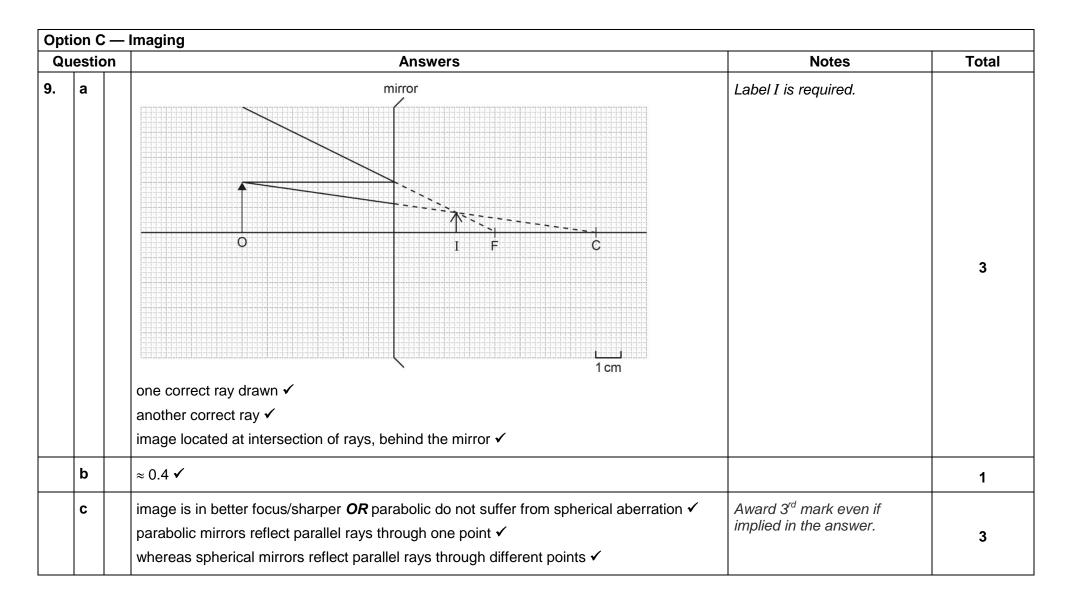
### **Section B**


| Opt | ion A    | Α — | Relativity                         |       |
|-----|----------|-----|------------------------------------|-------|
| Qı  | Question |     | Answers Notes                      | Total |
| 3   | а        |     | not being accelerated              |       |
|     |          |     | OR                                 |       |
|     |          |     | not subject to an unbalanced force | 1     |
|     |          |     | OR                                 |       |
|     |          |     | where Newton's laws apply 🗸        |       |
|     | b        | i   | c ✓                                | 1     |
|     | b        | ii  | C+V ✓                              | 1     |

| 4 |  | Y measures electrostatic repulsion only ✓                                                                 |   |
|---|--|-----------------------------------------------------------------------------------------------------------|---|
|   |  | protons are moving relative to X «but not Y» <b>OR</b> protons are stationary relative to Y $\checkmark$  |   |
|   |  | moving protons create magnetic fields around them according to X $\checkmark$                             | 4 |
|   |  | X also measures an <u>attractive</u> magnetic force <i>OR</i> relativistic/Lorentz effects also present ✓ |   |

| Q | uesti | ion | Answers                                                                                                                                        | Notes | Total |
|---|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 5 | а     |     | $\gamma = 4.503 \checkmark$<br>$\ll \frac{0.800}{4.50} = > 0.178 \text{ m} \checkmark$                                                         |       | 2     |
|   | b     |     | time = $\frac{0.800}{2.94 \times 10^8}$ $\checkmark$<br>2.74 ns $\checkmark$                                                                   |       | 2     |
|   | С     |     | $\frac{2.74}{4.5} OR \frac{0.178}{2.94 \times 10^8} \checkmark$<br>0.608 ns $\checkmark$                                                       |       | 2     |
|   | d     |     | it is measured in the frame of reference in which both events occur at the same position <b>OR</b> it is the shortest time interval possible ✓ |       | 1     |

| $V = \ll \frac{\Delta x}{\Delta ct} = \frac{0.8}{2.0} = 0.4c \checkmark$ Accept answers from 0.37c<br>to 0.43c. | 6 | а | $\Delta ct = 2.0 \text{ km } \text{AND} \ \Delta x = 0.8 \text{ km } \checkmark$ $v = \left(\frac{\Delta x}{\Delta ct}\right) = \frac{0.8}{2.0} = 0.4c \checkmark$ | 1 | 2 |
|-----------------------------------------------------------------------------------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|-----------------------------------------------------------------------------------------------------------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|


| Q | uestic | on | Answers                                                                                                                                             | Notes                                    | Total |
|---|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|
| 6 | b      | i  | events at same perpendicular distance from $x'$ axis of rocket are simultaneous <b>OR</b> line joining X to Y is parallel to $x'$ axis $\checkmark$ | MP1 may be present on spacetime diagram. |       |
|   |        |    | X and Y simultaneously then Z $\checkmark$                                                                                                          |                                          |       |
|   |        |    | <i>ct</i> / km                                                                                                                                      |                                          |       |
|   |        |    | 3                                                                                                                                                   |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    | cť                                                                                                                                                  |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    | Z                                                                                                                                                   |                                          | 2     |
|   |        |    |                                                                                                                                                     |                                          | 2     |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    | x'                                                                                                                                                  |                                          |       |
|   |        |    | $\mathcal{T}$                                                                                                                                       |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    | 0 0 x / km                                                                                                                                          |                                          |       |
|   |        |    | 1 2 3                                                                                                                                               |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |
|   |        |    |                                                                                                                                                     |                                          |       |



| Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notes                                                    | Total |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| 'a       | because $Mg$ and $N$ act through the axis<br><b>OR</b><br>only $F$ has a non-zero lever arm «about the axis» $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          | 1     |
| b i      | ALTERNATIVE 1<br>use of Newton's law for linear motion: $Mgsin\theta - F = Ma \checkmark$<br>use of Newton's law for rotational motion: $FR = I\alpha \checkmark$<br>combining $Mgsin\theta = Ma + \frac{I\alpha}{R} \checkmark$<br>substitution of $I = \frac{1}{2}MR^2$ and $\alpha = \frac{a}{R} \checkmark$<br>to get result<br>ALTERNATIVE 2<br>$Mgh = \frac{1}{2}Mv^2 + \frac{1}{4}Mv^2 \ll \text{from } \frac{1}{2}I\omega^2 = \frac{1}{2}(\frac{1}{2}MR^2)\frac{v^2}{R^2} \rtimes \checkmark$<br>$v^2 = \frac{4}{3}gh \checkmark$<br>$v^2 = 2as = 2a\frac{h}{\sin\theta} \checkmark$<br>manipulation to produce given answer $\checkmark$ | Accept correct use of torques<br>about point of contact. | 4     |

| Qu | lesti | ion | Answers                                                                                                                                                                                                               | Notes                                                                                                                                       | Total |
|----|-------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7  | b     | ii  | rearranging $s = \frac{1}{2}at^2$ to get $t = \sqrt{\frac{2s}{a}} \checkmark$<br>substitution to get $t = \ll \sqrt{\frac{2 \times 1.5}{\frac{2}{3} \times 9.81 \times \frac{1}{2}}} \gg = 0.96 \text{ s} \checkmark$ |                                                                                                                                             | 2     |
|    | С     |     | acceleration of ice is $g \sin \theta$ whereas for the solid cylinder acceleration is two thirds of this «so speed of ice must always be greater at same point» $\checkmark$                                          | Allow answers in terms of<br>energies, eg ice does not use<br>energy to rotate and<br>therefore will have a greater<br>translational speed. | 1     |
|    | d     |     | the hollow cylinder has a greater moment of inertia $\checkmark$ and hence a smaller acceleration $\checkmark$                                                                                                        |                                                                                                                                             | 2     |

| Qu | esti | on  | Answers                                                                                                                         | Notes | Total |
|----|------|-----|---------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 8  | а    | i   | 1400 «K» ✓                                                                                                                      |       | 1     |
|    | а    | ii  | $\frac{3}{2}P\Delta V = \frac{3}{2} \times 4 \times 10^5 \times 3 \times 10^{-3} \checkmark$                                    |       | 2     |
|    |      |     | 1800 J ✓                                                                                                                        |       |       |
|    | а    | iii | 1800 + <i>P</i> ∆ <i>V</i> = 1800 + 4×10 <sup>5</sup> ×3×10 <sup>-3</sup> <b>OR</b> use of $\Delta Q = \frac{5}{2} P\Delta V$ ✓ |       |       |
|    |      |     | 2<br>3000 J ✓                                                                                                                   |       | 2     |
|    | а    | iv  | curve starting at A ending on line CB <b>AND</b> between B and zero pressure ✓                                                  |       | 1     |
|    | b    | i   | 0 ✓                                                                                                                             |       | 1     |
|    | b    | ii  | ALTERNATIVE 1                                                                                                                   |       |       |
|    |      |     | C has the same volume as B $OR$ entropy is related to disorder $\checkmark$                                                     |       |       |
|    |      |     | higher temperature/pressure means greater disorder 🗸                                                                            |       |       |
|    |      |     | therefore entropy at C is greater «because entropy is related to disorder» $\checkmark$                                         |       |       |
|    |      |     | ALTERNATIVE 2                                                                                                                   |       | 3     |
|    |      |     | to change from B to C, $\Delta Q > 0 \checkmark$                                                                                |       |       |
|    |      |     | so $\Delta S > 0 \checkmark$                                                                                                    |       |       |
|    |      |     | $\Delta S$ related to disorder $\checkmark$                                                                                     |       |       |



| Qı | Question |     | Answers                                                                                                                                                                                                                                                                            | Notes                                                                                                                            | Total |
|----|----------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------|
| 10 | а        |     | $F_{\rm o} + f_{\rm e} = 84 \text{ so } f_{\rm e} = 84 - 82 = 2 \text{ cm } \checkmark$<br>$\ll M = \frac{f_{\rm o}}{f_{\rm e}} = \frac{82}{2} = *41 \checkmark$                                                                                                                   |                                                                                                                                  | 2     |
|    | b        |     | a sign convention is a way to distinguish between real and virtual objects <i>or</i> images <i>or</i> converging and diverging lenses ✓                                                                                                                                            |                                                                                                                                  | 1     |
|    | с        | i   | image will be virtual $v = -25 \text{ cm} \checkmark$<br>$\frac{1}{u} = \frac{1}{82} + \frac{1}{25} \checkmark$ $= 19 \text{ cm } or 0.19 \text{ m} \gg$                                                                                                                           | Award <b>[1 max]</b> if $v = +25$ cm<br>used to give $u = -36$ cm.                                                               | 2     |
|    | c        | ii  | image will be real $v = 84 - 19 = 65 \text{ cm } \checkmark$<br>$\ll \frac{1}{u} = \frac{1}{2} - \frac{1}{65} \approx \text{ so } u = 2.1 \text{ cm } \checkmark$                                                                                                                  |                                                                                                                                  | 2     |
|    | c        | iii | $M_{\rm e} = \left(\frac{D}{f_{\rm e}} + 1 = \frac{25}{82} + 1 = 1.3 \text{ AND } m_{\rm o} = \left(\frac{V}{f_{\rm o}} - 1 = \frac{65}{2} - 1 = 31 \text{ or } 32  \right)$<br>so $M = \left(\frac{M_{\rm e}}{M_{\rm e}} m_{\rm o} = 1.3 \times 31 = 340 \text{ or } 41  \right)$ | Far point adjustment gives<br>M = 9.3 (accept answers<br>from interval 9.3 to 9.6),<br>award <b>[1 max]</b> for full<br>working. | 2     |

| Qu | estion | Answers                                                                                                                                                                                                      | Notes                                           | Total |
|----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------|
| 11 | а      | curved, symmetrical path ✓                                                                                                                                                                                   | Refraction on entry not required and ignored in |       |
|    |        |                                                                                                                                                                                                              | diagram for simplicity.                         | 1     |
|    | b      | waveguide dispersion means that rays not parallel to the central axis take longer to transmit $\checkmark$                                                                                                   |                                                 |       |
|    |        | in a graded-index fibre rays away from the central axis travel at a higher speed <b>OR</b> rays are «refracted» closer to the central axis <b>OR</b> effective diameter of the fibre is reduced $\checkmark$ |                                                 | 3     |
|    |        | because refractive index is greater in the centre ${\it OR}$ refractive index is less at the edge $\checkmark$                                                                                               |                                                 |       |

| Question |   | Answers                                                                                                                                                             | Notes                                    | Total |
|----------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------|
| 12       | a | <pre>made of dust and/or gas ✓ formed from supernova ✓ can form new stars ✓ some radiate light from enclosed stars ✓ some absorb light from distant stars ✓</pre>   |                                          | 1 max |
|          | b | $d = \frac{1}{8.32 \times 10^{-3}} \text{ OR } 120 \text{ pc } \checkmark$ $120 \times 3.26 \times 9.46 \times 10^{15} = 3.70 \times 10^{18} \text{ m } \checkmark$ | Answer must be in metres, watch for POT. | 2     |
|          | с | distances are so big/large <b>OR</b> to avoid using large powers of 10 <b>OR</b> they are based on convenient definitions $\checkmark$                              |                                          | 1     |

| 13 | а | $T = \frac{2.9 \times 10^{-3}}{740 \times 10^{-9}} \checkmark$ 3900 K \screw                                                 | Answer must be to at least 2SF.                        | 2 |
|----|---|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---|
|    | b | $L = 5.67 \times 10^{-8} \times 4\pi \times (3.1 \times 10^{10})^2 \times 4000^4 \checkmark$<br>= 1.8 × 10 <sup>29</sup> W ✓ | Accept use of $3900^4$ to give $1.6 \times 10^{29}$ W. | 2 |
|    | с | absorption lines in spectra ✓<br>are specific to particular elements ✓                                                       | Accept "emission lines in spectra".                    | 2 |
|    | d | helium 🗸                                                                                                                     |                                                        | 1 |

| Question |   | on | Answers                                                                      | Notes | Total |
|----------|---|----|------------------------------------------------------------------------------|-------|-------|
| 13       | е |    | helium flash 🗸                                                               |       |       |
|          |   |    | expansion of outer shell <b>OR</b> surface temperature increase $\checkmark$ |       |       |
|          |   |    | planetary nebula phase 🖌                                                     |       | 3 max |
|          |   |    | only the core remains 🗸                                                      |       |       |
|          |   |    | if below 1.4 Ms/Chandrasekhar limit then white dwarf $\checkmark$            |       |       |

| 14 | а | i   | $z = \frac{\Delta \lambda}{\lambda_o}$ where $\Delta \lambda$ is the redshift of a wavelength and $\lambda_o$ is the wavelength measured at rest on Earth <b>OR</b> it is a measure of cosmological redshift $\checkmark$ | Do not allow just "redshift". | 1 |
|----|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|
|    | а | ii  | $x = \frac{R}{R_0} - 1, \ \frac{R_0}{R} = \frac{1}{z+1} \approx \text{so} \frac{R_0}{R} = \frac{1}{1.16} \approx -0.86 \checkmark$                                                                                        | Do not accept answer 1.16.    | 1 |
|    | а | iii | $v = zc = 0.16 \times 3 \times 10^8 = 4.8 \times 10^4 \mathrm{km  s^{-1}} \checkmark$ $d = \frac{v}{H_0} = \frac{4.8 \times 10^4}{68} = 706 \mathrm{Mpc} \mathbf{OR} 2.2 \times 10^{25} \mathrm{m} \checkmark$            |                               | 2 |
|    | b |     | as the universe expanded it cooled/wavelength increased ✓<br>the temperature dropped to the present approximate 3 K <b>OR</b> wavelength stretched to the<br>present approximate 1 mm ✓                                   | Value is required for MP2.    | 2 |