

Markscheme

May 2016

Physics

Standard level

Paper 2

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Physics SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions. Maximum total = [50 marks].

- 1. Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- 3. Each marking point in the "Answers" column is shown by means of a tick (✓) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative wording is indicated in the "Answers" column by a slash (/). Either wording can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "*OR*" between the alternatives. Either answer can be accepted.
- 7. Words in angled brackets « » in the "Answers" column are not necessary to gain the mark.
- **8.** Words that are <u>underlined</u> are essential for the mark.
- **9.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.

Qı	uesti	on	Answers	Notes	Total
1	а	i		ward [1 max] for use of = 10 N kg ⁻¹ , gives 682 J.	
			OR		
			$"E_{el} = E_P + E_K $		
			$"E_{el} = "\frac{1}{2} \times 55 \times 0.90^2 + 55 \times 9.8 \times 1.2$		2
			OR		
			669 J ✓		
			$ \mathscr{E}_{\text{el}} = 669 \approx 670 J $		
	а	ii		682 J used, answer is 0 m s ⁻¹ .	
			$v = \sqrt[4]{\frac{2 \times 670}{55}} = \text{ * } 4.9 \text{ m s}^{-1} \checkmark$		2
	b	i	no force/friction on the block, hence constant motion/velocity/speed ✓		1
	b	ii		o not allow a bald	
			rvelocuv/soeeo oecreases un iris siowino oown un ir oecelerales v	ratement of "N2" or "F = ma" or MP1.	2
				reat references to energy s neutral.	

Qι	estic	ons	Answers	Notes	Total
1	С		straight line through origin for at least one-third of the total length of time axis covered by candidate line ✓	Ignore any attempt to include motion before A.	
			followed by curve with decreasing positive gradient displacement o time	Gradient of curve must always be less than that of straight line.	2
	d		$F \ll \frac{\Delta p}{\Delta t} \approx \frac{55 \times 4.9}{0.42} \checkmark$ $F = 642 \approx 640 \text{ N} \checkmark$	Allow ECF from (a)(ii).	2
	е		«energy supplied by motor =» $120 \times 6.8 \times 1.5$ or 1224 J OR «power supplied by motor =» 120×6.8 or 816 W ✓ $e = 0.55$ or 0.547 or 55% or 54.7% ✓	Allow ECF from earlier results.	2

Qı	Question		Answers	Notes	Total
2	а		$g = \frac{GM}{r^2} = \frac{6.67 \times 10^{-11} \times 2.0 \times 10^{30}}{\left(6.0 \times 10^{11}\right)^2}$ OR $3.71 \times 10^{-4} \text{Nkg}^{-1} \checkmark$		1
	b				2

Q	Question		Answers	Notes	Total
3	а		use of $m \times c \times \theta$ with correct substitution for either original water or water from melted ice \checkmark energy available to melt ice = «8820 – 1260 =» 7560 J \checkmark equates 7560 to $mL \checkmark$ 3.02 × 10 ⁵ J kg ⁻¹ \checkmark FOR EXAMPLE 0.35 × 4200 × (18 – 12) OR 0.025 × 4200 × 12 \checkmark 7560 J \checkmark $L = \frac{7560}{0.025} \checkmark$ 3.02 × 10 ⁵ J kg ⁻¹ \checkmark	Award [3 max] if energy to warm melted ice as water is ignored (350 kJ kg ⁻¹). Allow ECF in MP3.	4
	b	i	no change in temperature/no effect, the energies exchanged are the same ✓		1
	b	ii	the time will be less/ice melts faster, because surface area is greater <i>or</i> crushed ice has more contact with water ✓		1

Q	Question		Answers	Notes	Total
4	а		a wave where the displacement of particles/oscillations of particles/movement of particles/vibrations of particles is parallel to the direction of energy transfer/wave travel/wave movement ✓	Do not allow "direction of wave".	1
	b	i	ALTERNATIVE 1		
			«distance travelled by wave =» 0.30 m ✓		
			$v = $ "\frac{\text{distance}}{\text{time}} = \text{340 m s}^{-1} \frac{1}{\text{V}}		
					2
			ALTERNATIVE 2		
			evaluates $T = \frac{0.882 \times 10^{-3} \times 1.6}{0.3}$ «= 4.7 ms» to give $f = 210$ or 212 Hz \checkmark		
			uses $\lambda = 1.6$ m with $v = f\lambda$ to give 340 m s ⁻¹		

Q	Question		Answers	Notes	Total
4	b	ii	ALTERNATIVE 1 $\lambda = 1.60 \text{m} \checkmark$ $f = \frac{340}{1.60} = 212 \text{or} 213 \text{Hz} \checkmark$ ALTERNATIVE 2 $T = \frac{0.882 \times 10^{-3} \times 1.6}{0.3} \text{w} = 4.7 \text{ms} \text{s} \checkmark$ $F = \text{w} \frac{1}{T} = \text{w} 210 \text{Hz} \checkmark$		2
	С	i	the displacement of the particle decreases <i>OR</i> «on the graph» displacement is going in a negative direction <i>OR</i> on the graph the particle goes down ✓ to the left ✓	Do not allow "moving downwards" unless accompanied by reference to graph.	2
	С	ii	molecules to the left of the particle have moved left and those to the right have moved right ✓ «hence» the particle is at the centre of a rarefaction ✓		2

Qı	uesti	on	Answers	Notes	Total
5	а		infinite resistance <i>OR</i> draws no current from circuit/component <i>OR</i> has no effect on the circuit ✓	Do not allow "very high resistance".	1
	b	i	«vertical intercept = emf» = 8.8 − 9.2 V ✓		1
	b	ii	attempt to evaluate gradient of graph \checkmark = 0.80Ω \checkmark	Accept other methods leading to correct answer, eg using individual data points from graph. Allow a range of $0.78 - 0.82$ Ω . If $\varepsilon = I(R + r)$ is used then the origin of the value for R must be clear.	2
	С		$3.5 = 2.4 \times 10^{28} \times \pi \left(1.2 \times 10^{-3}\right)^{2} \times 1.6 \times 10^{-19} \times v \iff v = 2.0 \times 10^{-4} \text{ ms}^{-1} \Rightarrow \checkmark$		1
	d		F = «qvB = 1.6×10 ⁻¹⁹ × 2.0×10 ⁻⁴ × 0.25 =» 8.1×10 ⁻²⁴ N ✓ directed down <i>OR</i> south ✓		2

Q	uestior	Answers	Notes	Total
6	а	«energy/mass difference =» $8.450 - 8.398$ «= 0.052 MeV» ✓ $Q = 1.7$ or 1.66 or 1.664 MeV OR 2.66×10^{-13} J ✓		2
	b	11 – 12 days ✓		1
	С	quark theory is simpler <i>OR</i> Occam's razor example <i>OR</i> simple model explains complex observations ✓		
		quotes experiment that led to quark theory, eg deep inelastic scattering \emph{or} electron scattering \checkmark		
		model incorporates strong/weak interactions/forces between protons and neutrons ✓		3 max
		model incorporates conservation rules ✓		
		model explains differences between neutrons and protons \emph{OR} explains decay of neutron to proton \checkmark		

Q	uesti	ion	Answers	Notes	Total
7	а		$I = \frac{\sigma A T^4}{4\pi d^2} \checkmark$	In this question we must see 4SF to award MP3.	
			$= \frac{5.67 \times 10^{-8} \times (7.0 \times 10^{8})^{2} \times 5800^{4}}{(1.5 \times 10^{11})^{2}}$ $OR \frac{5.67 \times 10^{-8} \times 4\pi \times (7.0 \times 10^{8})^{2} \times 5800^{4}}{4\pi \times (1.5 \times 10^{11})^{2}} \checkmark$	Allow candidate to add radius of Sun to Earth–Sun distance. Yields 1386 W m ⁻² .	2 max
			$I = 1397 \mathrm{W m^{-2}} \checkmark$		
	b		«transmitted intensity =» 0.70×1400 «= 980 W m ⁻² » \checkmark $\frac{\pi R^2}{4\pi R^2} \times 980$ W m ⁻² \checkmark 245 W m ⁻²		2
	С		$5.67 \times 10^{-8} \times T^4 = 245 \checkmark$ $T = 256 \text{K} \checkmark$		2