MARKSCHEME

November 2009

PHYSICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IB Cardiff.

General Marking Instructions

Subject Details: Physics SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [25 marks] and ONE question in Section B [$\mathbf{2 5}$ marks]. Maximum total $=[\mathbf{5 0} \mathbf{~ m a r k s}]$.

1. A markscheme often has more marking points than the total allows. This is intentional. Do not award more than the maximum marks allowed for part of a question.
2. Each marking point has a separate line and the end is signified by means of a semicolon (;).
3. An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
4. Words in brackets () in the markscheme are not necessary to gain the mark.
5. Words that are underlined are essential for the mark.
6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.
7. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the markscheme then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by writing $\boldsymbol{O W T T E}$ (or words to that effect).
8. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded.
9. Only consider units at the end of a calculation. Unless directed otherwise in the markscheme, unit errors should only be penalized once in the paper.
10. Significant digits should only be considered in the final answer. Deduct 1 mark in the paper for an error of 2 or more digits unless directed otherwise in the markscheme.
e.g. if the answer is 1.63:

2 reject
1.6 accept
1.63 accept
1.631 accept
1.6314 reject

SECTION A

A1. (a) both error bars of $\pm 5 \mathrm{~m} \mathrm{~s}^{-1}$ drawn correctly;
(b) a straight line cannot be drawn through the Accept the error bar comment with a error bars; straight line drawn on graph.
that goes through the origin;
(c) (i) $\pm 500\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$;
(ii) $\frac{\Delta v^{2}}{v^{2}}=2 \frac{\Delta v}{v}$;
$\Delta v^{2}=27^{2} \times 2 \times \frac{5}{27}$;
$\Delta v^{2} \approx(\pm) 300\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right) \quad$ or $\approx(\pm) 270\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right) ;$
or
percentage error/uncertainty in $v=(18.5=) 19 \%$;
percentage of error/uncertainty in $v^{2}=37 \%$;
absolute error $\approx(\pm) 300\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right)$ or $\approx(\pm) 270\left(\mathrm{~m}^{2} \mathrm{~s}^{-2}\right) ;$
Answer must be to one or two significant figures.
(d)

use of gradient triangle over at least half of line;
gradient $=640(\pm 40)$;
$=k^{2}$ to give $k=\sqrt{640}=25(\pm 1)$;
unit of k is $\mathrm{kg}^{-\frac{1}{2}} \mathrm{~m}^{\frac{1}{2}}$ or $\mathrm{ms}^{-1} \mathrm{~N}^{-\frac{1}{2}}$;
Do not penalize omission of factor of 1000 for missing y-axis label if already penalized in (c). Treat as ecf.

A2. (a) (i) (thermal) energy/heat required to change temperature by $1 \mathrm{~K} / 1 \mathrm{deg} / 1^{\circ} \mathrm{C} /$ mass \times specific heat capacity;
(ii) rate of energy absorption is equal to the rate of energy emission / temperature of copper stays constant;
(b) (i) use of $m c \Delta T$;
$0.12 \times 390 \times[T-308]=0.45 \times 4200 \times 30$;
$1520 \mathrm{~K} / 1250^{\circ} \mathrm{C}$;
(ii) energy likely to have been lost when moving copper / during warming of water; hence temperature of flame higher;

A3. (a)

Symbol	Gravitational field quantity	Electrical field quantity
Y	field strength	field strength;
K	(universal) gravitational constant	$\frac{1}{4 \pi \varepsilon_{0}}$ or Coulomb constant;
X	mass	charge;
s	distance from mass	distance from charge;

Award [1] for a correct gravitational and electrical field quantity in each row.
(b) identifies F_{g} or $\frac{6.7 \times 10^{-11} \times 9.1 \times 10^{-31} \times 1.7 \times 10^{-27}}{r^{2}}$;
identifies F_{e} or $\frac{\left[1.6 \times 10^{-19}\right]^{2}}{\varepsilon_{0} 4 \pi r^{2}}$;

$$
(2.3) \times 10^{39} \text {; }
$$

Allow [1 max] for correct algebraic solution that does not insert numbers.

SECTION B

B1. Part 1 Pumped-storage power station
(a) (i) mass $=50 \times 5.0 \times 10^{4} \times 10^{3}$;

$$
\text { accept } g=10
$$

$7.6 \times 10^{12}(\mathrm{~J})$;
$\approx 8 \times 10^{12}(\mathrm{~J})$
Do not penalize if the first marking point is incorporated into the second marking point.
(ii) flows for 6250 s ;
$1.2 \times 10^{9} \mathrm{~W}$ or $1.3 \times 10^{9} \mathrm{~W}$;
Accept solution from (a)(i) or from flow rate.
(b) (i) 53%;
(ii) losses in correct order and approximately correct ratio of size; arrows correctly labelled with source of loss;
Labelling of width in \% is acceptable for correct ratio only.

(c) (i) transmit at high/increased potential difference/voltage;
use (step-up) transformer to (increase potential difference/voltage and) reduce current;
lower current means $I^{2} R /$ resistive losses reduced;
large cable cross-section/good conductor used for cables so resistive losses reduced;
Do not accept discussion of reduction of station distance from consumer.
(ii) advantage: pumped storage on demand;
disadvantage: but needs to be re-stored before re-use;
Answer must focus on comparison between tidal and pumped storage.
Do not accept arguments based on unreliability of tide or installation costs.

Part 2 Force and energies

(a) (i) zero;
(ii)

correct position and labelling of:
weight/gravity force $/ \mathrm{mg}$;
two reactions drawn as shown;
force downwards on pedals;
Ignore any other vertical forces and all horizontal forces. The total upward vector lengths should approximately equal the downward vector lengths.
(iii) \quad drag force $=$ thrust/forward force/driving force;
net force $=$ zero therefore acceleration is zero;
(b) 320 W ;
(c) (i) acceleration $=\left[\frac{40}{70}\right]$;
$=0.57 \mathrm{~m} \mathrm{~s}^{-2}$;
(ii) use of $F \Delta s=\frac{1}{2} m v^{2}$;

56 m ;
or
$v^{2}=u^{2}+2$ as equivalent seen and substituted correctly;
56 m ;
(iii) sensible physical reason e.g. air resistance / bearing friction/brakes' effectiveness varies with speed;
attempt at explanation:
e.g. air resistance drops as speed drops, underestimate / distance travelled will be further;

B2. Part 1 Simple harmonic motion
(a) 1. acceleration proportional to displacement from equilibrium/centre (of motion) /mean position;
2. acceleration directed to equilibrium/centre/mean position;
(b) (i) $\frac{d}{2}$;
(ii) sine/cosine curve shape reasonable;

Do not allow semi-circle for half sine curve.
(iii) period labelled;
amplitude labelled;
(c) (i) $v=a 2 \pi f$ seen/used;
$3.3 \mathrm{~m} \mathrm{~s}^{-1}$;
(ii) acceleration $=a 4 \pi^{2} f^{2}$ seen/used;
$9.2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-2}$;

Part 2 Electric circuits

(a) any circuit in which the current will flow through the lamp; variable resistor connected as a potential divider;
voltmeter across lamp;
ammeter in series with lamp;

(b) correct shape;
through origin;

(c) 0.24 A ;
(d) resistance calculated $=5.2(\Omega)$;
$\mathrm{A}=\left(\frac{\rho l}{R}\right)=6.2 \times 10^{-8} \mathrm{~m}^{2} ;$
radius $=\sqrt{\frac{A}{\pi}}$ seen/used;
$=1.4 \times 10^{-4} \mathrm{~m}$;
(e) calculates resistance of lamps in parallel (2.6Ω);
$V=\varepsilon-I r$ used to give $V=1.0 \mathrm{~V}$;
1.0 V is lower than $1.25 \mathrm{~V} /$ power available to each lamp is 192 mW lower than 300 mW ;
(terminal pd/power lower) hence not operating normally; $\left\{\begin{array}{l}\text { Award [0] for only stating } \\ \text { this bald answer. }\end{array}\right.$
[4]
Watch for ECF from (d).
Award [4 max] for any correct numerical argument involving energy or power
calculations.

B3. Part 1 Nuclear fission and fusion
(a) (i) the energy released when nuclides form from constituents / energy required to separate nucleus into separate nucleons / OWTTE;
(ii) S marked at maximum of curve (on curve/axis); (judge by eye)
(iii) highest binding energy per nucleon;
(b) (i) uranium binding energy per nucleon $=7.6(\mathrm{MeV})(\pm 0.1)$; total uranium binding energy $=7.6 \times 235=1786(\mathrm{MeV})$;
total $\mathrm{Kr}+$ Ba binding energy $=141 \times 8.4+92 \times 8.7=1985(\mathrm{MeV})$;
energy released $=1985-1786=198.8(\mathrm{MeV})$;
$\simeq 200 \mathrm{MeV}$
(ii) 2 ;
(iii) one reaction: $\Delta E=3.1 \times 10^{-28} \times\left[3 \times 10^{8}\right]^{2}\left(=2.8 \times 10^{-11} \mathrm{~J}\right)$;
number required $=\frac{1000}{2.8 \times 10^{-11}}=3.6 \times 10^{13}$;
(iv) two neutrons produced may cause two further fissions; producing four neutrons which may produce four further fissions;
Accept answer in diagram form but it must feature four generated neutrons with only two neutrons giving further fission.
(c) nuclear fusion waste much less active than fission waste;
fusion fuel much more abundant than fission fuel;
fusion fuel has higher energy density than fission;
radiation/pollution from plant lower for fusion;

Part 2 Global warming

(a) (i) increased (infra) radiation from the atmosphere to the Earth / OWTTE / increase in the greenhouse effect due to human activity;
(ii) increase in solar (flare) activity ;

Earth orbits closer to Sun;
volcanic activity increases global warming (through CO_{2} emission)/decreases global warming (particles emitted reflect sunlight);
(b) (i) total volume of ice $=14 \times 10^{12} \times 1.5 \times 10^{3} \mathrm{~m}^{3}$;
mass $=\left(2.1 \times 10^{16} \times 920=\right) 1.9 \times 10^{19} \mathrm{~kg}$;
(ii) new volume $1.9 \times 10^{16} \mathrm{~m}^{3}$;
level change $=\frac{\text { new volume }}{\text { area of ocean }}$;
50 m ;
(c) oceanic ice displaces a certain amount of sea water/floats on sea water; when it melts the sea water level does not change;

