M09/4/PHYSI/SP2/ENG/TZ2/XX/M+

International Baccalaureate® Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2009

PHYSICS

Standard Level

Paper 2

12 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

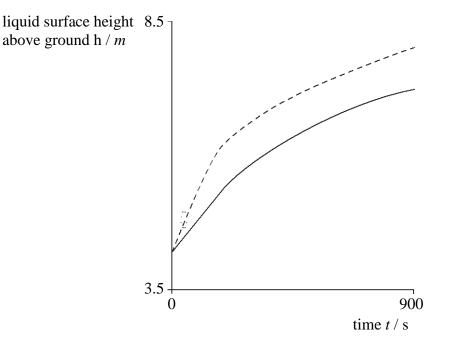
General Marking Instructions

Subject Details: Physics SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [25 marks] and ONE question in Section B [25 marks]. Maximum total = [50 marks].

- 1. A markscheme often has more marking points than the total allows. This is intentional. Do **not** award more than the maximum marks allowed for part of a question.
- 2. Each marking point has a separate line and the end is signified by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.
- 7. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the markscheme then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by writing *OWTTE* (or words to that effect).
- 8. Effective communication is more important than grammatical accuracy.
- **9.** Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded.
- **10.** Only consider units at the end of a calculation. Unless directed otherwise in the markscheme, unit errors should only be penalized once in the paper.
- 11. Significant digits should only be considered in the final answer. Deduct 1 mark in the paper for an error of 2 or more digits unless directed otherwise in the markscheme.


e.g. if the answe	r is 1.63:
2	reject
1.6	accept
1.63	accept
1.631	accept
1.6314	reject

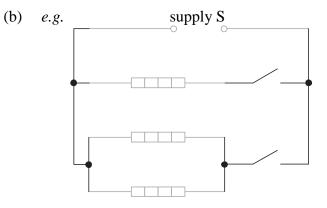
SECTION A

-4-

A1.	(a)	line going through each error bar;	[1]
	(b)	(i) <u>line does not go through $(0,0)$/origin</u> so no; Watch for ECF from (a).	[1]
		(ii) line is curved / gradient not constant so no;	[1]
	(c)	line drawn to find intercept on y-axis; 4.2 (±0.1)m;	[2]
	(d)	large (at least half of line) triangle from straight line portion of graph; slope = $0.012(\pm 0.001) (m s^{-1})$; volume per second = area × slope; $(0.022 m^3 s^{-1})$	[3]
		Alternatively for [2 max].	
		determines height difference over time range within 0 and 120 s; volume per second = $\frac{1.8 \times [\text{difference in heights}]}{\text{time between heights}};$	
		$(0.022\mathrm{m^3s^{-1}})$	
	(e)	$(850 \times 0.022) = 19 \mathrm{m}^3$ or $(850 \times 0.02) = 17 \mathrm{m}^3$;	[1]

(f) graph starts at same point but half initial gradient by eye;
line always lower than original by eye and ending about ¹/₄ way down y-axis; [2]
Original line need not be shown. Allow ECF from (c) if the curve begins at (0, 3.5).

A2. (a) (i) ratio of potential difference to current / $\frac{V}{I}$ with terms defined; [1]


- 5 -

(ii) resistance
$$=\frac{230^2}{980}$$
;
= 54 Ω ; [2]

Award [2] for bald correct answer.

(iii)
$$L = \frac{RA}{\rho};$$

= $\frac{54 \times \pi \times \left[1.75 \times 10^{-4}\right]^2}{1.3 \times 10^{-6}};$
($L \approx 4$ m) [2]

Must see re-arrangement of data booklet equation or completely correct substitution as shown in second line for first mark.

switch connected so that *P* can be achieved;

another switch connected so that 2P and 3P can be achieved; Award [0] if three or more switches used. Allow any correct alternative including case where single resistor is permanently connected to supply. There are many variants, this diagram is only one example. [2]

A3. (a) region/area/volume (of space); where a mass/charge experiences a force;

(b)	Particle	Charge on particle	Initial direction of motion of particle	Direction of force on particle	Type of field
	Α	uncharged	stationary	in direction of field	gravitational;
	В	negative	along direction of field	opposite to direction of field	electric; (accept electrostatic)
	С	positive	normal to direction of field	normal to direction of field	magnetic;
	D	positive	normal to direction of field	in direction of field	electric; (accept electrostatic)
	E	uncharged	opposite to direction of field	in direction of field	gravitational;

[2]

[5]

- 6 -

SECTION B

B1. Part 1 Dynamics and energy
(a) equation is for constant acceleration;
force varies and so acceleration changes; [2]
(b) (i) average force = 2100N;
acceleration =
$$\left(\frac{2100}{0.0320} =\right) 6.6 \times 10^4 \text{ ms}^{-2}$$
; [2]
(ii) uses area under the line;
1 square is equivalent to 0.125 Ns;
area is $68 \rightarrow 72$ squares;
(to give momentum change $8.5 \rightarrow 9.0 \text{ Ns}$) [3]
(c) (i) use of $\Delta p = m\Delta v$;
 $v = \left(\frac{8.8}{0.032} =\right) 280 \text{ ms}^{-1}$; [2]
Allow value for momentum change from (b)(ii).
(ii) use of power = change in kinetic energy;
time taken
change in kinetic energy = $\frac{1}{2} \times 0.032 \times 280^2$;
 $\left(\frac{1300}{5 \times 10^{-3}}\right) = \text{power} = 0.26 \text{ MW}$; [3]
or
use of $E = \frac{p^2}{2m}$;
 $\frac{8.8^2}{2 \times 0.032}$;
power = 0.24 MW;
Award [0] for solution from P = Fv.

N3 states that action and reaction are equal and opposite;
 so force on gun and force on bullet are action and reaction pair;
 so force on gun is opposite direction to bullet/backwards;

[3]

Part 2 Fossil fuels

(a)	(i)	source of energy (in a useful form);	[1]
	(ii)	Award any two of the following. peat; coal; oil; gas; Do not accept derived fuels, e.g. diesel.	[2 max]
	(iii)	rate of production of fuel much smaller than rate of usage; so fuel will be exhausted/run out;	[2]
	(iv)	idea that width of arrow is related to magnitude of energy/power; efficiency $= \frac{1.0}{2.8} = 0.36$; Allow any efficiency $0.31 \rightarrow 0.41$ i.e. ± 0.1 cm on each measurement. Allow answer expressed as percentage.	[2]
(b)	read chea healt not p man pow <i>Thes</i>	high energy density; ily available (in short-term); per production of electrical energy; th considerations not treated as a major issue; possible to generate sufficient electrical energy without it; y transport systems rely on fossil fuels; er stations can be built close to energy source; <i>the marking points are not an exhaustive list. Do not allow repetitions or vague tements they should be clear and precise.</i>	[3 max]

B2. Part 1 Simple harmonic motion and waves

 (a) displacement is proportional to acceleration / vice versa; because graph is straight-line through origin; displacement and acceleration in opposite directions / acceleration always directed towards origin; because negative gradient;

(b)	use of $\omega^2 = (-)\frac{a}{x}$;		
	$\omega^2 = \frac{2900}{0.60 \times 10^{-3}};$		
	$\omega = 2\pi f;$		
	$f = \frac{1}{2\pi} \sqrt{\frac{2900}{0.60 \times 10^{-3}}};$		
	(to give $f = 350$ Hz)		[4]
(c)	0.60 mm ;		[1]
(d)		means of <u>vibrations/oscillations;</u> lirection parallel to direction of energy transfer;	[2]

(ii)
$$\frac{330}{350}$$
 or use of $c = f \lambda$;
0.94 m;
Award [2] for bald correct answer.
[2]

	222		
(a)	$^{222}_{86}$ R	n ;	[]
	$_{2}^{4}\alpha$;		[2]
(b)	(i)	1	
		path of α -particle \longrightarrow D	
		, ● ,	
		gold nucleus angle shown correctly;	[1]
		Horizontal line must be present, angle can be marked to straight portion of deviated path.	[-]
	(ii)	same number of protons / additional number of neutrons / nuclei are isotopes; no charge change so deviation unchanged; <i>Award</i> [0] for bald answer or answer with incorrect explanation.	[2]
(c)	shov nucl	vs alpha-particle returning along original path <u>and</u> path must not touch gold eus;	[1]
(d)	(i)	fusion;	[1]
	(ii)	$\Delta m = 0.048 \times 10^{-27} \text{ kg};$	
		$\Delta E = 0.048 \times 10^{-27} \times (3.0 \times 10^8)^2$ shown clearly;	
		to give 4.3×10^{-12} J	[2]
	(iii)	number of reactions $\left(= \frac{3.9 \times 10^{26}}{4.3 \times 10^{-12}} \right)$ = 9.1×10 ³⁷ s ⁻¹ ;	
		volume of core = $\frac{4}{3}\pi \left[0.25 \times 7.0 \times 10^8 \right]^3$;	
		$(=2.2\times10^{25} \text{ m}^3)$	
		number = $4.0 \times 10^{12} \text{ m}^{-3} \text{ s}^{-1}$ or = $4.1 \times 10^{12} \text{ m}^{-3} \text{ s}^{-1}$;	[3]
		Award [3] for bald correct answer.	

- 10 -

Part 2 α - particle scattering and nuclear processes

B3. Part 1 Wave power

(a) conversion to mechanical energy described *e.g.* oscillating water column/duck /turbine;

- 11 -

mechanical energy converted to electrical energy *e.g.* dynamo/ *Do not allow turbine.* [2]

- (b) (i) mass of water in crest = $\frac{1}{2}A\lambda L\rho$; this "falls" through a height *A*; change in potential energy = $mgh = \frac{1}{2}A^2\lambda L\rho g$; [3]
 - (ii) $\frac{v}{\lambda}$ crests pass a point in unit time; power per unit length = $\frac{1}{2}A^2\lambda L\rho g \frac{v}{\lambda} \times \frac{1}{L}$; = $\frac{1}{2}A^2\rho g v$ [2]
- (c) estimate of speed as 0.5 → 10 m s⁻¹; power per unit length = ½×0.3²×1.2×10³×10×[0.5→10] yields 270 W m⁻¹ → 5.4 kW m⁻¹; *Award* [1] for answer where no speed estimate made, response will leave answer in form 540v. Do not apply a unit penalty in this question whether algebraic or numerical solution.
- (d) sinusoidal would have a smaller volume of water in each peak;
 some indication that first marking point leads to a smaller amount; [2]
- (e) *e.g.* generate a.c./d.c.; available day and night; for same power, area is smaller;

[2 max]

Part 2 Albedo of the Earth

(a)	the molecules of the gas have a natural frequency of oscillation equal to the frequency of infra-red; (the molecule will absorb radiation) because of resonance at this (resonant) frequency;	[2]
(b)	because it traps/absorbs infra-red radiated by the surface of Earth;	[1]
(c)	nitrogen dioxide / methane / water / NO $_2$ / CH $_4$ / H $_2$ O;	[1]
(d)	(i) (most of the) infra-red (radiation) absorbed is not all re-radiated into space/escaping into space / <i>OWTTE</i> ;	[1]
	(ii) $albedo = \frac{reflected electromagnetic radiation}{incident electromagnetic radiation}$ / measure of the amount of radiation reflected <u>into space</u> ; carbon dioxide reduces the amount of <u>reflected</u> radiation; hence albedo decreased; <i>Award</i> [0] for a bald answer in terms of "albedo decreased".	[3]
(e)	present $\frac{I_{out}}{I_{in}} = 0.30$ so present $I_{out} = 102 (W m^{-2});$	
	after doubling new $I_{out} = (340 \times 0.29) = 98.6 (W m^{-2});$ change = 102 – 98.6; ($\approx 3 W m^{-2}$) Accept working from 0.31 to 0.30.	[3]

(f) assume all the radiated energy is in the infra-red / all the extra gas absorbs the radiated radiation / no change in radiated power due to Earth temperature change; [1]

- 12 -