

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

MARKSCHEME

May 2008

PHYSICS

Standard Level

Paper 2

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IB Cardiff.

Subject Details: Physics SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions in Section A [25 marks] and ONE question in Section B [25 marks]. Maximum total = [50 marks].

- 1. A markscheme often has more marking points than the total allows. This is intentional. Do not award more than the maximum marks allowed for part of a question.
- 2. Each marking point has a separate line and the end is signified by means of a semicolon (;).
- 3. An alternative answer or wording is indicated in the markscheme by a slash (/) either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.
- 7. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the markscheme then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by writing *OWTTE* (or words to that effect).
- 8. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 9. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. Indicate this with ECF (error carried forward).
- 10. Only consider units at the end of a calculation. Unless directed otherwise in the mark scheme, unit errors should only be penalized once in the paper. Indicate this by writing -1(U) at the first point it occurs and U on the cover page.
- 11. Significant digits should only be considered in the final answer. Deduct 1 mark in the paper for an error of 2 or more digits unless directed otherwise in the markscheme.

e.g. if the answe	r is 1.63:
2	reject
1.6	accept
1.63	accept
1.631	accept
1.6314	reject

Indicate the mark deduction by writing -1(SD) at the first point it occurs and SD on the cover page.

SECTION A

A1.	(a)	a straight line / linear graph cannot be drawn that lies within all the error bars;	[1]
	(b)	smooth curve; that does not go outside error bars;	[2]
	(c)	recognize that D_{λ} is the gradient of the graph; suitable triangle $\Delta \lambda \ge 100$ nm; to give magnitude $1.15 - 1.40 \times 10^{-5}$ nm ⁻¹ / 10^4 m ⁻¹ ; negative sign;	[4]
	(d)	 (i) recognize that A is the intercept on the n axis; line shown extrapolated; A = 1.6020(±0.0001); Award full marks for correct answer with omission of first marking point award [2 max] if they find the gradient (B) and then use a data point to calculate A. 	[3]
		(ii) it is the value of <i>n</i> / refractive index for an infinite wavelength / $\lambda = infinity / minimum value of n;$	[1]
A2.	(a)	the molecules gain energy by collision with the moving piston; therefore <u>average</u> KE of the molecules increases; temperature is a measure of <u>average</u> KE of the molecules (so temperature increases); <i>"Average kinetic energy" must appear once for full marks</i> .	[3]
	(b)	$P_{2} = \frac{1.0 \times 10^{5} \times 0.20 \times 330}{300 \times 0.07};$ = 3.1×10 ⁵ Pa; Award full marks for bald correct answer.	[2]
A3.	(a)	(i) $F = Mg \sin \theta;$ = 960×9.8×0.26; 2.4×10 ³ N	[2]
		(ii) $KE = \left(\frac{1}{2}mv^2\right) = (480 \times 81) = 3.9 \times 10^4 \text{ J};$	[1]
	(b)	KE = Fs; to give $F = 2.6 \times 10^3$ N; Award [1 max] if $v^2 = 2as$ is used.	[2]

(c) recognize that $KE = mass \times sp$ ht \times rise in temperature;

$$\Delta \theta = \frac{3.9 \times 10^4}{2 \times 900 \times 5.2};$$

= 4.2 K;
Award full marks for bald correct answer.

no energy / heat loss to the surroundings / energy distributed evenly in shoe and drum;

-7-

[4]

SECTION B

B1. Part 1 Momentum and energy

- (a) (impulse =) force × time for which force acts; impulse $(F\Delta t)$ = change in momentum (Δp) ;
- (b) The following points are needed for maximum marks. from Newton 3; when objects are in contact, the forces exerted by the objects on each other are equal and opposite; from Newton 2 / collision time is the same; impulses are equal and opposite; therefore changes in momentum are equal and opposite / total change in momentum is zero;

or

Accept algebraic solution. from Newton 3; $F_{AB} = -F_{BA}$; from Newton 2; $F_{AB}\Delta t = m_A\Delta v_A$; $= -m_B\Delta v_B$; [5]

(c) (i)
$$v = \sqrt{2gh}$$
;
to give $v = 2.2 \text{ m s}^{-1}$;
Award full marks for bald correct answer. [2]

(ii) from conservation of momentum / $V \times 5.2 \times 10^{-3} = 0.38 \times 2.2$;

$$V = \frac{0.38 \times 2.2}{5.2 \times 10^{-3}};$$

to give $V = 160 \text{ m s}^{-1}$ [2]

[2]

[3]

B1. Part 2 Waves

(a) Transverse

the particles (of the medium) vibrate at right angles; to the direction of energy transfer;

Longitudinal

the particles (of the medium) vibrate in the same direction as the direction of energy transfer; [3]

(b) (i) time period = 0.13 s; $\left(f = \frac{1}{T} = \frac{1}{0.13}\right) = 7.7 (\pm 0.3) \text{ Hz};$ [2]

Award full marks for bald correct answer.

(c)
$$\lambda = \frac{v}{f};$$

 $\frac{15}{7.7};$

- $\lambda = 1.95 \text{ cm} \approx 2.0 \text{ cm}$ [2]
- (d) start at $(-1.2 \rightarrow -2.0)$ on *y*-axis; sine curve of amplitude 8 mm; wavelength 2 cm;

(e) use of
$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2}$$

 $\sin \theta_2 = \frac{v_2}{v_1} \sin \theta_1;$
 $= \frac{20}{15} \sin 30 \text{ to give } \theta_2 = 42^\circ;$
angle = 48°;
[3]

B2. Part 1 Power

(a) the rate of working /
$$\frac{\text{work}}{\text{time}}$$
; [1]
Ratio or rate must be clear.

– 10 –

(b) let
$$\Delta s$$
 = distance moved in time Δt such that $v = \frac{\Delta s}{\Delta t}$;
 $P = \frac{\text{work}}{\text{time}} = \frac{F\Delta s}{\Delta t}$;
 $= Fv$
All symbols must be defined for full marks.
[2]

(ii) recognize that
$$F = \text{rate of change of momentum};$$

 $\left(=\frac{\Delta m}{\Delta t}v\right) = (60 \times 2.0) = 120 \text{ N};$ [2]
Award full marks for bald correct answer.

(iii)
$$(P = 120 \times 2.0) = 240$$
 W; [1]

(iv)
$$K = \frac{1}{2} \frac{\Delta m}{\Delta t} v^{2};$$
$$= \left(\frac{1}{2} \times 60 \times 4.0\right) = 120 \text{ W};$$
[2]

Award full marks for bald correct answer.

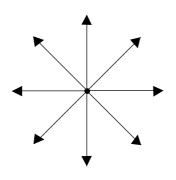
 (v) the sand on the conveyor belt must slip to be accelerated; in slipping kinetic energy is dissipated / lost as internal energy / heat in the sand and conveyor belt;

or

there is friction between the sand and conveyor belt;
therefore kinetic energy is dissipated / lost as internal energy / heat in the sand and conveyor belt;
Award zero for bald statement "energy is lost as heat".

(d)
$$P_{in} = \left(\frac{P_{out}}{eff}\right) = \frac{240}{0.40};$$

= 600 W;
Award full marks for bald correct answer. [2]


an atom or a nucleus that is characterized by the constituents of its nucleus / a (a) (i) particular type of atom or nucleus / OWTTE; (in particular) by its proton (atomic) number and its nucleon number / number of protons and number of neutrons; [2] nuclides that have the same proton number but different nucleon number / (ii) same number of protons different number of neutrons; [1] (b) (i) beta; [1] 5.00216 MeV is equivalent to 0.00537 u; (ii) 23.99096 = 23.98504 + 0.00537 + rest of mass of particle;rest mass = 0.00055 u; [3] No credit given for bald correct answer. (c) sodium-24 has more nucleons; and more nucleons (usually) means greater (magnitude of) binding energy; or sodium-23 has less nucleons; and less nucleons (usually) means less (magnitude of) binding energy; [2] data points t = T, 2T and 3T corresponding to, $\frac{N_0}{2}$, $\frac{N_0}{4}$ and $\frac{N_0}{8}$ / (d) (i) some indication of correct data points *i.e.* N values need not be written in; Judge by eye. best fit line through data points; [2] (ii) (from the) gradient / slope (at time *t*); [1]

- 11 -

B2. Part 2 Nuclear reaction

B3. Fields and electric charge associated with atoms

- (a) the force per unit charge;
 exerted on a small positive charge / positive test charge / positive point charge; [2]
- (b) (i)

at least 6 symmetric radial lines as shown <u>touching the proton;</u> correct direction; [2]

(ii) use of
$$E = k \frac{q}{r^2}$$

 $E = \frac{9.0 \times 10^9 \times 1.6 \times 10^{-19}}{25 \times 10^{-22}};$
 $= 5.8 \times 10^{11} \text{ N C}^{-1};$ [2]
Award full marks for bald correct answer.

(c) (i) use of
$$F = qE$$

 $F = 1.6 \times 10^{-19} \times 5.8 \times 10^{11}$;
 $= 9.3 \times 10^{-8} N$ [1]
Allow use of force law.
(ii) mv^2

(ii) recognize that
$$F = \frac{mv}{r}$$
;
 $\frac{1}{2}mv^2 = \frac{1}{2}Fr$;
 $= \frac{1}{2} \times 9.3 \times 10^{-8} \times 5.0 \times 10^{-11}$;
 $= 2.3 \times 10^{-18} \text{ J}$
[3]

(iii) kinetic energy
$$= \frac{2.3 \times 10^{-18}}{1.6 \times 10^{-19}} = 14 \text{ eV};$$

PE = Total - KE;
 $= -28 \text{ (eV)};$

[3]

- (d) (conduction) electrons have high random speeds;
 when accelerated by an electric field inside a conductor / OWTTE;
 although they collide (frequently) with lattice ions;
 they obtain a net speed in the direction opposite to the field direction; [4]
- (e) the power supplied per unit current / the energy supplied per unit charge; [1]

(f) (i)
$$R = \left(\frac{6.0}{0.2}\right) = 30 \Omega;$$
 [1]

(ii)
$$P = (6.0 \times 0.2) = 1.2$$
 W; [1]

(g) (i)
$$I = \left(\frac{6.0}{15}\right) = 0.40 \text{ A};$$
 [1]

(ii) total current in the circuit 0.60 A; resistance of parallel circuit = 10Ω / lost volts = 5.0×0.6 ;

total resistance in circuit =15 Ω / lost volts = 3 V; e.m.f. = (0.60×15) = 9 V;

or

total current = 0.60 A; pd across R = 6.0 V; e.m.f. = $6.0 + 0.60 \times 5.0$; = 9.0 V;

[4]
