MARKSCHEME

May 2006

PHYSICS

Standard Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

Option A - Mechanics Extension

A1. (a) $v^{2}=30^{2}-2 \times 10 \times s$;
$v^{2}=0$;
$s=45 \mathrm{~m}$;
or
$t=3.0 \mathrm{~s} ;$
$s=30 \times 3.0-\frac{1}{2} \times 10 \times 3.0^{2} ;$
$s=45 \mathrm{~m} ;$
Accept valid alternative methods.
(b) $\quad X=20 \times 6.0$;
$X=120 \mathrm{~m}$;

A2. (a) (i) (deceleration due to) gravitational pull of Earth;
(ii) $\quad a=\frac{\Delta v}{\Delta t}=\frac{5100-5370}{600}$;

$$
a=-0.45 \mathrm{~ms}^{-2}
$$

(iii) ECF from (ii):

$$
E=\frac{F}{m} ;
$$

$$
E=a
$$

$$
E=-0.45 \mathrm{Nk} \mathrm{~g}^{-1}
$$

Accept $m s^{-2}$ as correct units.
(b) general shape $(1 / r)$;
correct quadrant;

No need to show the curve further away from the distance axis to achieve full marks.

A3. (a) general direction upward at an angle to wall and beam; direction through point of intersection of wire and line of action of W;
Accept line of action of R within 3 mm of point of intersection.
(b)

resolve horizontally:
$T_{x}=39 \cos 40^{\circ}=30 \mathrm{~N}$
$\left|R_{x}\right|=\left|T_{x}\right|=30 \mathrm{~N}$;
resolve vertically:
$T_{y}=39 \sin 40^{\circ}=25 \mathrm{~N}$;
$\left|R_{y}+T_{y}\right|=50 \Rightarrow\left|R_{y}\right|=25 \mathrm{~N}$;
Tan $\varphi=\frac{R_{y}}{R_{x}}=\frac{25}{30} \Rightarrow \varphi=40^{\circ}$;
$R=\sqrt{30^{2}+25^{2}}=39 \mathrm{~N}$;
Award [1] for the direction of R (angle φ). Allow argument using symmetry.

Option B — Quantum Physics and Nuclear Physics

B1. (a) light consists of photons;
number of photons $/ \mathrm{sec}$ determines intensity of light;
each photon extracts an electron (from metal);
therefore, current is proportional to intensity of light;
(b)

V_{0} is lower / more negative;
general shape of curve (same);
saturation current smaller;

B2. $\lambda=\frac{h c}{\Delta E}$;
$\Delta E=2.88 \times 10^{-15} \mathrm{~J}$;
$\lambda=\frac{6.63 \times 10^{-34} \times 3.00 \times 10^{8}}{2.88 \times 10^{-15}}$
$\lambda=6.9 \times 10^{-11} \mathrm{~m}$;

B3. (a) (i) activity $=(-) \lambda \mathrm{N}$;

$$
\begin{aligned}
& \lambda=\frac{4.25 \times 10^{2}}{8.90 \times 10^{19}}=4.78 \times 10^{-18} \mathrm{~s}^{-1} ; \\
& \text { Allow } 1.51 \times 10^{-10} \mathrm{yr}^{-1}
\end{aligned}
$$

(ii) $T_{1 / 2}=\frac{\ln 2}{4.78 \times 10^{-18}}=1.45 \times 10^{17} \mathrm{~s}$;
$=4.60 \times 10^{9}$ years;
(b) e.g. activity would change during analysis to find $N /$ rate of change of activity is too great to allow $\mathrm{N}(\mathrm{t})$ to be determined / OWTTE;

B4. (a)

path A must show recoil;

path B must show reasonable curvature in correct position (hyperbolic);
Line should show symmetry about nucleus.
(b) $\quad \alpha$-particle comes to rest when $E_{\mathrm{K}}=E_{\mathrm{P}} /$ all KE is converted to (electrostatic) PE;
$\mathrm{EPE}=\frac{2 Z e^{2}}{4 \pi \varepsilon_{0} r}=E_{\mathrm{K}} ;$
therefore, r can be estimated;

Option C - Energy Extension

C1. (a) internal energy: (random translational) kinetic energy of atoms/molecules;
(b) (i) 546 K ;
(ii) temperature doubled but pressure remains constant;
hence volume doubled to $44.0 \mathrm{~m}^{3}$;
or
$V \propto T$;
therefore, volume doubled to $44.0 \mathrm{~m}^{3}$;
(c) (i) $\quad W=0$;
(ii) $\Delta W=p_{\mathrm{A}}\left(V_{\mathrm{C}}-V_{\mathrm{A}}\right)$
$=1.01 \times 10^{5} \times 22.0$;
$=22.2 \times 10^{5} \mathrm{~J}$;
Note the ECF from (b)(ii).
(iii) work done on the gas;
because the volume is decreasing;
Award [0] for a bald statement without any attempt at reasoning.
(iv) total work done by gas in cycle is
$\Delta W=0+31.5 \times 10^{5}-22.2 \times 10^{5}$;
work output $=9.3 \times 10^{5} \mathrm{~J}$;
C2. (a) (i) $P=\frac{\rho \pi r^{2} v^{3}}{2}=\frac{1.3 \times \pi \times 7.5^{2} \times 9.0^{3}}{2}$;
$P=8.4 \times 10^{4} \mathrm{~W}$;
(ii) the speed of air (mass) cannot drop to zero / OWTTE;
(iii) 1. idea of less KE available for the next turbine;
2. idea of turbulence;
(b) advantage:
statement: wind is a renewable source of energy / clean source of energy;
comment: any relevant comment re statement;
disadvantage:
statement: number of turbines required is very large (about 270) / noise / ugly site /
ecological impact;
comment: any relevant comment re statement;
Award [1] for each statement and [1] for each comment re statement.
N.B. some aspect(s) might be considered to be an advantage or disadvantage (e.g. ugliness/beauty of site), accept both.

Option D - Biomedical Physics

D1. stress $=F / A$;
maximum stress $=W / A$;
in new bone $A_{2}=4 A_{1}$;
\Rightarrow new $W_{2}=4 W_{1}$;
Award full marks for correct answer with any sensible reasoning.

D2. (a) $I L$ (sound intensity level) $=10 \lg \left(I / I_{0}\right)$; where $I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$;
(b) intensity at eardrum $=\frac{2.8 \times 10^{-7}}{1.9 \times 10^{-5}}=1.5 \times 10^{-2} \mathrm{~W} \mathrm{~m}^{-2}$;

$$
\begin{aligned}
& I L=10 \lg \left(\frac{1.5 \times 10^{-2}}{1.0 \times 10^{-12}}\right) ; \\
&=100 \mathrm{~dB} \\
& \text { Accept } 102 \mathrm{~dB}
\end{aligned}
$$

(c) long exposure / loud sound would cause deafness/tinnitus;

D3. (a) (i) $3.0(\pm 0.1) \mathrm{mm}$;
(ii) $\mu=\frac{\ln 2}{\mathrm{t}_{1 / 2}}$;

$$
\begin{equation*}
\mu=\frac{\ln 2}{3.0 \mathrm{~mm}}=0.23 \mathrm{~mm}^{-1} \tag{2}
\end{equation*}
$$

Allow ECF from (i) above range gives values from $0.20 \mathrm{~mm}^{-1}$ to $0.28 \mathrm{~mm}^{-1}$.
(b) $\frac{I}{I_{0}}=e^{-\mu x}$;
$\frac{I}{I_{0}}$ greater $\Rightarrow \mu$ smaller;
\Rightarrow half-thickness will be greater (greater intensity for same thickness of bone);
Award [2 max] for correct statements with no explanation.
(c) abdomen has approximately constant μ;
barium meal has high μ value;
barium meal lines stomach;
so outline of stomach becomes clear;

Option E - The History and Development of Physics

E1. (a) Copernicus \Rightarrow planets move in circle about the Sun
Kepler \Rightarrow planets move in ellipses about the Sun;
Copernicus \Rightarrow hypothesis
Kepler \Rightarrow based on experimental data;
(b) an inverse square law between the Sun and planets; this force produced the orbital motion of the planets; and accounted for the elliptical orbits; able to derive Kepler's law (of periods) theoretically;

E2. straight-line as a result of force;
curve as a result of weakening of force;
vertical when no force;
vertical (downward) motion is natural motion;

E3. (a) to determine the equivalence between mechanical energy and thermal energy / OWTTE;
(b) weights raised by turning handle;
then allowed to fall so turning the paddle;
mass of weights and height of fall measured;
mass of water measured;
rise in temperature of water measured;
repeat to obtain measurable temperature;

E4. (a) (i) fluorescence glowing; a shadow (of the cross) opposite to cathode/cross;
(ii) the shadow moved; [1]
(b) (presence of) shadow \Rightarrow rays move along straight-line as light does / rays cast a shadow as light does;
shadow moves \Rightarrow a magnet does not influence light;

Option F - Astrophysics

F1. (a) there is an equilibrium;
between radiation pressure and gravitational pressure / OWTTE;
(b) visual binary:
stars (of system) can be separated through a telescope/binoculars / OWTTE;
spectroscopic binary:
(analysis of) light spectrum (from system) reveals two different (classes of) stars;

F2. (a) (class $M \Rightarrow$ low surface temperature \Rightarrow) red;
(b) $\quad d(p c)=\frac{1}{p}=\frac{1}{5.0 \times 10^{-3}}=200 \mathrm{pc}$;
$200 \mathrm{pc} \times 3.26 \times 9.46 \times 10^{15}=6.2 \times 10^{18} \mathrm{~m} ;$
(c) (i) use of $L=b\left(4 \pi d^{2}\right)$;

$$
\begin{aligned}
& L=\left(1.6 \times 10^{-8}\right) \times(4 \pi) \times\left(6.2 \times 10^{18}\right)^{2} ; \\
& L=7.6 \times 10^{30} \mathrm{~W} ;
\end{aligned}
$$

(ii) $T=\frac{2.9 \times 10^{-3}}{\lambda_{\max }}=\frac{2.9 \times 10^{-3}}{935 \times 10^{-9}}$;

$$
\begin{equation*}
T=3100 \mathrm{~K} \tag{2}
\end{equation*}
$$

(d) $\quad L=\sigma T^{4}\left(4 \pi R^{2}\right) \Rightarrow R=\frac{(L)^{\frac{1}{2}}}{\left(\sigma T^{4} 4 \pi\right)^{\frac{1}{2}}}$;

$$
\begin{aligned}
& R=\frac{\left(7.6 \times 10^{30}\right)^{\frac{1}{2}}}{\left(5.67 \times 10^{-8} \times(3100)^{4}(4 \pi)\right)^{\frac{1}{2}}} ; \\
& \frac{R}{R_{\mathrm{s}}}=\frac{R}{7.0 \times 10^{8}}=500 ;
\end{aligned}
$$

F3. (a) the intensity of illumination falls off as $1 / r^{2}$;
(since stars uniformly distributed) the number of stars seen from Earth increases as r^{2}; therefore, the sky should be equally bright in any direction / OWTTE;
Award [1] for "in any direction, the line of sight will encounter the surface of a star \Rightarrow sky as bright as sun".
(b) the BB model leads to the idea of the expansion of the universe; the BB model leads to the idea that the observable universe is not infinite;
Award [1] for "because the universe (stars) is not infinitely old" (universe far younger than necessary for us to see a star in every direction. Finite speed of light means that we are not receiving light from all sources) / OWTTE.

Option G - Relativity

G1. (a) proper time is the time measured in a FR at rest with respect to events;
clock is at rest with respect to muon;
(b) calculated value of gamma, $\gamma=5.0$;

$$
T_{m}=\frac{T_{g}}{\gamma}=\frac{10.2}{5.0}=2.0 \mu \mathrm{~s}
$$

G2. c is constant in all FR / OWTTE; shorter path length to L for Nino; so flash on L seen first by Nino;

G3. (a) transformations made under the assumptions that time measurements (and space measurements) are independent of the observer;
Accept "absolute".
(b) (i) $u_{x}=u^{\prime}{ }_{x}+v=0.9800 c+0.9800 c=1.9600 c$;

Accept-1.9600c corresponding to - values of v and $u^{\prime}{ }_{x}$.
(ii) $u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}}=\frac{0.9800 c+0.9800 c}{1+\frac{0.9800 c(0.9800 c)}{c^{2}}}$;
$u_{x}=0.9998 c$;
Accept -0.9998 c corresponding to - values of v and $u_{x}{ }_{x}$.
(c) \quad in (b)(i) $v>c$;
since this is not possible, then the Galilean transformation equation is not applicable;

G4. (a) RME: rest mass times c^{2};
$T E$: sum of RME + kinetic energy (assuming no potential energy); [2]
(b) 938 MeV ;
(c) $\quad \gamma m_{0} c^{2}=m_{0} c^{2}+V e ;$
$V e=\gamma m_{0} c^{2}-m_{0} c^{2}$
$V e=m_{0} c^{2}(\gamma-1)$;
$V e=938(4.0)$;
$V=3750 \mathrm{MV}$;

Option H - Optics

H1. (a) oscillating (varying) electric and magnetic fields/electromagnetic waves;
(b) (i) X-rays; [1]
(ii) $10^{14} \mathrm{~Hz} / 10^{15} \mathrm{~Hz}$;

H2. (a) (i)

one ray from fish with correct refraction;
2nd ray from fish with correct refraction;
rays backward to give correct position of image;
Here only a qualitative explanation (diagram) is expected, since no numerical values are given. A quantitative solution is asked for in part (a) (iii).
(ii) virtual since extension of rays gives its position / appear to come from fish / OWTTE;
(iii) $n=\frac{\text { real depth }}{\text { apparent depth }}$;
apparent depth $=\frac{48}{1.3}=37 \mathrm{~cm}$;

H3.
(a)

ray through centre (pole) of lens;
ray parallel to principal axis;
location of image between 6.9 cm and 8.1 cm ;
Accept other suitable ray.
(b) eye to the right of lens;
(c) magnification $=\frac{H}{h}=\frac{3.7}{1.5}$;

$$
=2.5(\pm 0.2) \text {; }
$$

or
$v=7.6 \mathrm{~cm}$
$u=3.0 \mathrm{~cm}$
$m=\frac{7.6}{3.0}$;
$=2.5(\pm 0.2)$;
(d) (i) converging (convex) lenses;
(ii) $\frac{1}{3.4}+\frac{1}{v}=\frac{1}{4.0}$;
$v=(-) 22.7 \mathrm{~cm}$;
magnification: $\frac{22.7}{3.4}=6.7$;
total magnification: $6.7 \times 24=160$;
Allow two sig fig for answer (-)25 cm.
\Rightarrow magnification $=7.4$
\Rightarrow total magnification $=180$

