M06/4/PHYSI/SP3/ENG/TZ2/XX/M

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

PHYSICS

Standard Level

Paper 3

15 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option A — Mechanics Extension

A1. (a)
$$v^2 = 30^2 - 2 \times 10 \times s$$
;
 $v^2 = 0$;
 $s = 45 \text{ m}$;
or
 $t = 3.0 \text{ s}$;
 $s = 30 \times 3.0 - \frac{1}{2} \times 10 \times 3.0^2$;
 $s = 45 \text{ m}$;
Accept valid alternative methods.
[3]

(b)
$$X = 20 \times 6.0$$
;
 $X = 120 \text{ m}$; [2]

(ii)
$$a = \frac{\Delta v}{\Delta t} = \frac{5100 - 5370}{600};$$

 $a = -0.45 \,\mathrm{m \, s^{-2}};$ [2]

(iii) ECF from (ii):

$$E = \frac{F}{m};$$

$$E = a;$$

$$E = -0.45 \text{ Nk g}^{-1};$$
Accept ms⁻² as correct units.
[3]

(b) general shape (1/*r*); correct quadrant;

No need to show the curve further away from the distance axis to achieve full marks.

[2]

A3. (a) general direction upward at an angle to wall and beam; direction through point of intersection of wire and line of action of W; *Accept line of action of R within 3 mm of point of intersection.*

resolve horizontally: $T_x = 39 \cos 40^\circ = 30 \text{ N}$ $|R_x| = |T_x| = 30 \text{ N}$;

resolve vertically:

$$T_{y} = 39 \sin 40^{\circ} = 25 \text{ N};$$

$$\left|R_{y} + T_{y}\right| = 50 \Longrightarrow \left|R_{y}\right| = 25 \text{ N};$$

$$Tan \ \varphi = \frac{R_{y}}{R_{x}} = \frac{25}{30} \implies \varphi = 40^{\circ};$$

$$R = \sqrt{30^{2} + 25^{2}} = 39 \text{ N};$$

Award [1] for the direction of R (angle φ). Allow argument using symmetry.

[5 max]

[2]

Option B — Quantum Physics and Nuclear Physics

B1. (a) light consists of photons; number of photons/sec determines intensity of light; each photon extracts an electron (from metal); therefore, current is proportional to intensity of light;

*V*₀ is lower / more negative; general shape of curve (same); saturation current smaller;

B2.
$$\lambda = \frac{hc}{\Delta E}$$
;
 $\Delta E = 2.88 \times 10^{-15} \text{ J}$;
 $\lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{2.88 \times 10^{-15}}$
 $\lambda = 6.9 \times 10^{-11} \text{ m}$;

[3]

[4]

[3]

B3. (a) (i) activity = $(-)\lambda N$; $\lambda = \frac{4.25 \times 10^2}{8.90 \times 10^{19}} = 4.78 \times 10^{-18} \text{ s}^{-1}$; [2] Allow $1.51 \times 10^{-10} \text{ yr}^{-1}$. (ii) $T_{\frac{1}{2}} = \frac{\ln 2}{4.78 \times 10^{-18}} = 1.45 \times 10^{17} \text{ s}$; $= 4.60 \times 10^9 \text{ years}$; [2]

(b) *e.g.* activity would change during analysis to find N / rate of change of activity is too great to allow N(t) to be determined / OWTTE; [1]

(b) α -particle comes to rest when $E_{\rm K} = E_{\rm p}$ / all KE is converted to (electrostatic) PE; ${\rm EPE} = \frac{2Ze^2}{4\pi\varepsilon_0 r} = E_{\rm K}$;

therefore, r can be estimated;

[3]

-7-

Option C — Energy Extension

C1.	(a)	internal energy: (random translational) kinetic energy of atoms/molecules;		
	(b)	(i)	546 K;	[1]
		(ii)	temperature doubled but pressure remains constant; <u>hence</u> volume doubled to 44.0 m ³ ;	
			or	
			$V \propto T$;	
			therefore, volume doubled to $44.0 \mathrm{m}^3$;	[2]
	(c)	(i)	W = 0;	[1]
		(ii)	$\Delta W = p_{\rm A} (V_{\rm C} - V_{\rm A})$	
			$=1.01\times10^{5}\times22.0$;	
			$= 22.2 \times 10^5 \text{ J}$;	[2]
			Note the ECF from (b)(ii).	
		(iii)	work done on the gas;	
			because the volume is decreasing;	[2]
			Award [0] for a bald statement without any attempt at reasoning.	
		(iv)	total work done by gas in cycle is	
			$\Delta W = 0 + 31.5 \times 10^5 - 22.2 \times 10^5;$	
			work output = 9.3×10^5 J;	[2]
C2.	(a)	(i)	$P = \frac{\rho \pi r^2 v^3}{2} = \frac{1.3 \times \pi \times 7.5^2 \times 9.0^3}{2};$	
			2 2 $P = 8.4 \times 10^4 \text{ W};$	(2)
			$P = 8.4 \times 10$ W;	[2]
		(ii)	the speed of air (mass) cannot drop to zero / OWTTE;	[1]
		(iii)	1. idea of less KE available for the next turbine;	
			2. idea of turbulence;	[2]
	(b)	advantage:		
		<i>statement</i> : wind is a renewable source of energy / clean source of energy; <i>comment</i> : any relevant comment re statement;		
		disadvantage:		
		statement: number of turbines required is very large (about 270) / noise / ugly site /		
			ogical impact;	[4 max]
		<i>comment</i> : any relevant comment re statement; [Award [1] for each statement and [1] for each comment re statement.		
		N.B. some aspect(s) might be considered to be an advantage or disadvantage (e.g.		
		ugliness/beauty of site), accept both.		

[4]

Option D—**Biomedical Physics**

D1. stress =
$$F/A$$
;
maximum stress = W/A ;
in new bone $A_2 = 4A_1$;
 \Rightarrow new $W_2 = 4W_1$;
Award full marks for correct answer with any sensible reasoning. [4]

D2. (a) *IL* (sound intensity level) = 10 lg
$$(I/I_0)$$
;
where $I_0 = 1.0 \times 10^{-12}$ W m⁻²; [2]

(b) intensity at eardrum =
$$\frac{2.8 \times 10^{-7}}{1.9 \times 10^{-5}} = 1.5 \times 10^{-2} \text{ W m}^{-2}$$
;
 $IL = 10 \log \left(\frac{1.5 \times 10^{-2}}{1.0 \times 10^{-12}} \right)$;
 $= 100 \text{ dB}$;
Accept 102 dB.
[3]

(c) long exposure / loud sound would cause deafness/tinnitus; [1]

D3. (a) (i)
$$3.0(\pm 0.1)$$
 mm; [1]

(ii)
$$\mu = \frac{\ln 2}{t_{\frac{1}{2}}};$$

 $\mu = \frac{\ln 2}{3.0 \,\mathrm{mm}} = 0.23 \,\mathrm{mm}^{-1};$
[2]

Allow ECF from (i) above range gives values from 0.20 mm^{-1} to 0.28 mm^{-1} .

(b)
$$\frac{I}{I_0} = e^{-\mu x}$$
;
 $\frac{I}{I_0}$ greater $\Rightarrow \mu$ smaller;
 \Rightarrow half-thickness will be greater (greater intensity for same thickness of bone);

 $\Rightarrow half-thickness will be greater (greater intensity for same thickness of bone); [3] Award [2 max] for correct statements with no explanation.$

(c) abdomen has approximately constant μ;
 barium meal has high μ value;
 barium meal lines stomach;
 so <u>outline</u> of stomach becomes clear;

– 9 –

Option E — The History and Development of Physics

E1.	(a)	Kepl Cope	ernicus \Rightarrow planets move in circle about the Sun er \Rightarrow planets move in ellipses about the Sun; ernicus \Rightarrow hypothesis er \Rightarrow based on experimental data;	[2]	
	(b)	this f and a	averse square law between the Sun and planets; force produced the orbital motion of the planets; accounted for the elliptical orbits; to derive Kepler's law (of periods) theoretically;	[3 max]	
E2.	curv verti	straight-line as a result of force; curve as a result of weakening of force; vertical when no force; vertical (downward) motion is natural motion;			
E3.	(a)	to de	termine the equivalence between mechanical energy and thermal energy / OWTTE;	[1]	
	(b)	 (b) weights raised by turning handle; then allowed to fall so turning the paddle; mass of weights and height of fall measured; mass of water measured; rise in temperature of water measured; repeat to obtain measurable temperature; 		[5 max]	
E4.	(a)	(i)	fluorescence glowing; a shadow (of the cross) opposite to cathode/cross;	[2]	
		(ii)	the shadow moved;	[1]	
	(b)	· •	sence of) shadow \Rightarrow rays move along straight-line as light does / rays cast a ow as light does;		
		shadow moves \Rightarrow a magnet does not influence light;			

– 10 –

[1]

Option F — Astrophysics

F1.	(a)	there is an equilibrium; between radiation pressure and gravitational pressure / <i>OWTTE</i> ;	[2]
	(b)	<i>visual binary</i> : stars (of system) can be separated through a telescope/binoculars / <i>OWTTE</i> ;	
	<i>spectroscopic binary</i> : (analysis of) light spectrum (from system) reveals two different (<u>classes</u> of) st		[2]

F2. (a) (class
$$M \Rightarrow$$
 low surface temperature \Rightarrow) red;

(b)
$$d(pc) = \frac{1}{p} = \frac{1}{5.0 \times 10^{-3}} = 200 \,\mathrm{pc};$$

 $200 \,\mathrm{pc} \times 3.26 \times 9.46 \times 10^{15} = 6.2 \times 10^{18} \,\mathrm{m};$ [2]

(c) (i) use of
$$L = b(4\pi d^2)$$
;
 $L = (1.6 \times 10^{-8}) \times (4\pi) \times (6.2 \times 10^{18})^2$;
 $L = 7.6 \times 10^{30}$ W;
[3]

(ii)
$$T = \frac{2.9 \times 10^{-3}}{\lambda_{\text{max}}} = \frac{2.9 \times 10^{-3}}{935 \times 10^{-9}};$$

 $T = 3100 \text{ K};$
[2]

(d)
$$L = \sigma T^{4} (4\pi R^{2}) \implies R = \frac{(L)^{\frac{1}{2}}}{(\sigma T^{4} 4\pi)^{\frac{1}{2}}};$$

 $R = \frac{(7.6 \times 10^{30})^{\frac{1}{2}}}{(5.67 \times 10^{-8} \times (3100)^{4} (4\pi))^{\frac{1}{2}}};$
 $\frac{R}{R_{s}} = \frac{R}{7.0 \times 10^{8}} = 500;$
[3]

F3. (a) the intensity of illumination falls of $f as 1/r^2$; (since stars uniformly distributed) the number of stars seen from Earth increases as r^2 ; therefore, the sky should be equally bright in any direction / *OWTTE*; [3] *Award* [1] for "in any direction, the line of sight will encounter the surface of a *star* \Rightarrow *sky as bright as sun*".

- 12 -

(b) the BB model leads to the idea of the expansion of the universe;
the BB model leads to the idea that the observable universe is not infinite; [2 max]
Award [1] for "because the universe (stars) is not infinitely old" (universe far younger than necessary for us to see a star in every direction. Finite speed of light means that we are not receiving light from all sources) / OWTTE.

Option G — Relativity

- G1. (a) proper time is the time measured in a FR at rest with respect to events; clock is at rest with respect to muon; [2]
 - (b) calculated value of gamma, $\gamma = 5.0$;

$$T_m = \frac{T_g}{\gamma} = \frac{10.2}{5.0} = 2.0 \,\mu \mathrm{s} \,;$$
^[2]

G2. *c* is constant in all FR / *OWTTE*; shorter path length to L for Nino; so flash on L seen first by Nino;

[3]

- G3. (a) transformations made under the assumptions that time measurements (and space measurements) are independent of the observer; [1] Accept "absolute".
 - (b) (i) $u_x = u'_x + v = 0.9800c + 0.9800c = 1.9600c$; [1] Accept -1.9600c corresponding to - values of v and u'_x .

(ii)
$$u_x = \frac{u'_x + v}{1 + \frac{u'_x v}{c^2}} = \frac{0.9800c + 0.9800c}{1 + \frac{0.9800c (0.9800c)}{c^2}};$$

 $u_x = 0.9998c;$
Accept - 0.9998c corresponding to - values of v and $u'_x.$
[2]

- (c) in (b)(i) v > c; since this is not possible, then the Galilean transformation equation is not applicable; [2]
- **G4.** (a) *RME*: rest mass times c^2 ; *TE*: sum of RME + kinetic energy (assuming no potential energy); [2]
 - (b) 938 MeV; [1]

(c)
$$\gamma m_0 c^2 = m_0 c^2 + Ve;$$

 $Ve = \gamma m_0 c^2 - m_0 c^2$
 $Ve = m_0 c^2 (\gamma - 1);$
 $Ve = 938(4.0);$
 $V = 3750 \text{ MV};$
[4]

Option H — **Optics**

H1.	(a)	oscillating (varying) electric and magnetic fields/electromagnetic waves;		[1]
	(b)	(i)	X-rays;	[1]
		(ii)	10^{14} Hz / 10^{15} Hz;	[1]

- 14 -

H2. (a) (i)

one ray from fish with correct refraction;
2nd ray from fish with correct refraction;
rays backward to give correct position of image;
Here only a qualitative explanation (diagram) is expected, since no numerical
values are given. A quantitative solution is asked for in part (a)(iii).[3]

(ii) virtual <u>since</u> extension of rays gives its position / appear to come from fish / OWTTE; [1]

;

(iii)
$$n = \frac{\text{real depth}}{\text{apparent depth}};$$

apparent depth = $\frac{48}{1.3} = 37 \text{ cm}$

[2]

M06/4/PHYSI/SP3/ENG/TZ2/XX/M

