# MARKSCHEME 

May 2006

## PHYSICS

## Standard Level

## Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

## Option A - Mechanics Extension

A1. (a) total $=\frac{1}{2} \times 0.44 \times 22^{2}$;
$+0.44 \times 9.8 \times 32$;
$=240(244) \mathrm{J}$;
Award only 2 out of 3 if $g=10 \mathrm{~ms}^{-2}$.
(b) energy at sea level $=244 \times 0.66=160(161) \mathrm{J}$;
$v^{2}=\frac{(2 \times 161)}{0.44}$
$v=27 \mathrm{~m} \mathrm{~s}^{-1}$;

A2. (a) gravitation / gravity;
(b) gravitational force $=\frac{G M_{1} M_{2}}{\left(R_{1}+R_{2}\right)^{2}}$;
centripetal force $=\frac{M_{1} R_{1} \times 4 \pi^{2}}{T^{2}}$;
gravitational force provides centripetal force
$\frac{G M_{1} M_{2}}{\left(R_{1}+R_{2}\right)^{2}}=\frac{M_{1} R_{1} \times 4 \pi^{2}}{T^{2}}$;
$T^{2}=\frac{R_{1}\left(R_{1}+R_{2}\right)^{2} \times 4 \pi^{2}}{G M_{2}}$
(c) from formula, $\frac{R_{1}}{M_{2}}$ is a constant;
(so if $R_{1}$ is smaller) then $M_{2}$ is smaller / $M_{1}$ is larger;
Do not award second mark if no reasoning given or argument is fallacious.

A3. (a) e.g. weight of object or reaction force (not mass); nature of surfaces; whether stationary / moving (velocity arguments must include zero);
Award any other sensible suggestions.
(b) (i) R shown acting upwards and normal to slope;
(ii) F shown acting upwards and parallel to slope;

Lines of action not important as long as they pass through block.
(c) (i) (resolving normal to slope) $W \cos \theta=R$;
(resolving along to slope) $W \sin \theta=\mu R$;
working to show $\tan \theta=\mu$;
(ii) maximum value of $\mu$ is 1.0 and $\tan ^{-1} 1.0=45^{\circ}$;

## Option B — Quantum Physics and Nuclear Physics

B1. (a) $V_{\mathrm{S}}$ gives a measure of (maximum) kinetic energy of electrons; intensity determines rate of production / emission (not energy);
(b) photon energy = work function + maximum kinetic energy of electron;
$V_{\mathrm{S}}=\frac{h c}{\lambda e}-\frac{\varphi}{e}$;
gradient is $\frac{h c}{e}$;
gradient is $1.24( \pm 0.02) \times 10^{-6}$;
$h=\frac{\left(1.24 \times 10^{-6} \times 1.6 \times 10^{-19}\right)}{\left(3 \times 10^{8}\right)} ; \quad\left\{\begin{array}{c}\text { Award mark for final answer only } \\ \text { if this marking point is clear. }\end{array}\right.$

$$
=6.6( \pm 0.1) \times 10^{-34} \mathrm{~J} \mathrm{~s} ;
$$

B2. (a) used to compare / measure nuclear / atomic masses;
(b) Bainbridge type

Or Aston type
collimated beam;
velocity selector;
region of magnetic field and vacuum;
suitably placed detector; collimated beam; region of electric field; region of magnetic field and vacuum; suitably placed detector;
(c) fraction $x$ of mass $35 u$; (i.e. some clear explanation of working)
$35 x+37(1-x)=35.5$;
$x=0.75$;
ratio is $\frac{0.75}{0.25}=3.0$;

B3. (a) baryon numbers $+1+1 \quad 0 \quad 0$; lepton numbers $\quad 0 \quad 0 \quad+1 \quad-1$;
(b) mass-energy / charge / spin / momentum / parity / time conjugation;

Do not allow either "mass" or "energy".

## Option C - Energy Extension

C1. (a) (i) CA;
(ii) $\quad V \propto T$ and $T=290 \mathrm{~K}$;
temperature $=3 \times 290=870 \mathrm{~K}$;
Award [0] for 51C.
(iii) $p \propto T$;
temperature $=\left(\frac{12.5}{2}\right) \times 290=1800 \mathrm{~K} ;$
102C scores [1] out of [2].
(b) external work done $=p \Delta V$;

$$
\begin{aligned}
& =2.0 \times 10^{5} \times 6.0 \times 10^{-4} \\
& =120 \mathrm{~J}
\end{aligned}
$$

change in internal energy $(=300-120)=180 \mathrm{~J}$;
(c) energy supplied to gas $(=\mathrm{A} \rightarrow \mathrm{B}+\mathrm{B} \rightarrow \mathrm{C})=550 \mathrm{~J}$;
work done going through cycle $=120 \mathrm{~J} /$ representing the area under the pressure volume graph;
transfer in stage $\mathrm{C} \rightarrow \mathrm{A}(=550-120)=430 \mathrm{~J}$;

C2. (a) organic/living matter;
(partial) decomposition;
under conditions of "high"(temperature) and pressure;
(b) (i) e.g. renewable energy source;
no $\mathrm{CO}_{2}$ emissions;
Do not allow "pollution free"/cost.
Award [1] each for any two sensible suggestions.
(ii) e.g. large number of turbines required;
covering large area of land;
e.g. output dependent on wind speed;
so unreliable;
e.g. change in local climate;
as a result of turbulence;
Award [1] each for any two sensible suggestions and [1] for each explanation.

## Option D - Biomedical Physics

D1. (a) area scales as dimension ${ }^{2}$ Or $^{2} L^{2}$;
volume scales as dimension ${ }^{3}$ Or $^{3}$;
(b) surface area of cylinder $>$ surface area of sphere (for same mass);
rate of energy absorption greater for cylinder;
hence \{temperature rises more rapidly\} for the same mass;

D2. (a) conductive: loss occurs in middle ear / damage to membranes / ossicles; sensory: loss occurs in inner ear / damage within cochlea / auditory nerve;
(b) (i) (changes in) loudness are response of ear to (changes in) sound intensity; response is (approximately) logarithmic with intensity;
(ii) loss of hearing is selective;
so it is sensory;
Do not award mark iffallacious or no argument.
(iii) $\quad 60=10 \lg \left(\frac{I}{\left(1.0 \times 10^{-12}\right)}\right)$;
$I=1.0 \times 10^{-6} \mathrm{~W} \mathrm{~m}^{-2} ;$

D3. (a) e.g. simple scattering;
photoelectric effect;
Compton scattering;
pair production;
Allow [1] each for any two mechanisms.
(b) (i) thickness of material required to reduce intensity / photon flux by one half;
(ii) ratio $=0.5^{8}$;

$$
=\frac{1}{256} \text { or } 3.9 \times 10^{-3} ;
$$

(c) ultrasound (nearly all) reflected by bone (boundary) but X-rays can penetrate; X-rays show up internal structures;

## Option E - The History and Development of Physics

E1. (a) (precise) positions and times/movements for the (known) planets;
(b) planetary orbits are elliptical rather than circular; with Sun at one focus;
(c) Newton developed (universal) law of gravitation; law was used to derive Kepler's laws;

E2. (a) wire carrying a current; causes deflection of a compass needle / suspended magnet;
(b) used two (parallel) current-carrying conductors; (mutual) forces when current in wires;

E3. (a) phlogiston / caloric is a fluid; this flows between bodies when they are at different temperatures;
(b) e.g. thermal energy produced as a result of friction / cannot explain change of phase;
further detail regarding stated phenomenon e.g. fluid endless / does not cause temp change;

E4. (a) wax blocks placed in neutron beam; protons ejected from wax blocks; emergent radiation examined in cloud chamber;
(b) energy / speed of protons measured;
in a cloud chamber / by absorption in aluminium;
momentum of protons measured;
by collision with nitrogen atoms;

## Option F - Astrophysics

F1. (a) constellation: Pattern of stars;
Candidate must indicate that stars are not close together.
stellar cluster: group of stars bound by gravitation / in same region of space;
(b) $\quad d=\frac{1}{0.0077}$;

$$
=130 \mathrm{pc}
$$

(c) no atmospheric turbulence / irregular refraction;
(d) (i) red/red-orange; (not orange)
blue / blue-white / white;
(ii) Betelgeuse looks brighter;
(iii) $L=4 \pi b d^{2}$;

Rearrangement of formula on data sheet required.
$d=4.0 \times 10^{18} \mathrm{~m}$;
$L=4 \pi \times 2.0 \times 10^{-7} \times\left(4.0 \times 10^{18}\right)^{2}$;
$L=4.0 \times 10^{31} \mathrm{~W}$;
(iv) $L=4 \pi b d^{2}$
luminosity of Rigel is about half that of Betelgeuse (or ecf from (iii)); brightness of Rigel is about 0.1 times that of Betelgeuse;
so Rigel is more distant (must be a consistent conclusion from statements about luminosity and brightness);
Do not allow mark for fallacious or no argument.
Mere statement that luminosity and brightness are less so Rigel is more distant scores [1 mark] only.

F2. (a) universe is infinite;
(b) number of stars in shell increases as $R^{2}$;
intensity decreases as $\frac{1}{R^{2}}$;
brightness of shell is constant;
adding all shells to infinity;
sky would be as bright as Sun / uniformly bright;
Award [2 max] for argument based on any line of sight lands on a star.

## Option G - Relativity

G1. (a) means of locating an object in space;
(b) (i) observer $O$ : light from flashes arrives simultaneously at O ; because takes same time, as measured by O , to reach O / because O is at rest with respect to A and B ;
observer $C$ : flash from A reaches C before flash from B ;
because speed of light independent of reference frame;
(ii) $\gamma=\frac{9.0}{7.2}=1.25$;
$\left(1-\frac{v^{2}}{c^{2}}\right)^{-0.5}=1.25$;
$v=0.6 c$;
Award [0] if use of $\gamma=0.8$.

G2. (a) (i) $1.8 c$;
(ii) recognize use of $u_{x}^{\prime}=\frac{\left(u_{x}-v\right)}{\left(1-\frac{u_{x} v}{c^{2}}\right)}$;

Allow equation with + in numerator and denominator.
$u_{x}^{\prime}=\frac{(c+0.8 c)}{\left(1-\left\{\frac{-0.8 c^{2}}{c^{2}}\right\}\right)} ;$
$u_{x}^{\prime}=c$;
Award [1 max] if substitution gives - sign in numerator or denominator. Award [2 max] for a statement " $c$ is same in all frames so $u_{x}^{\prime}=c$ ".
(b) (according to Maxwell), speed of light independent of speed of source / depends on permittivity and permeability which are constants;
this is shown by answer in (a)(ii);

G3. (a) rest mass energy: $E=m_{0} c^{2}$ where $m_{0}$ is the rest mass;
total energy: sum of rest mass energy and kinetic energy;
(b) energy $=2 \times 0.51=1.02 \mathrm{MeV}$;
estimate because only rest-mass energy considered / k.e. not considered;
(c) curved line through origin always "above" given line after about $0.4 c$; asymptotic at $v=c$;

## Option H — Optics

H1. (a) (i) correct position by eye but within $\pm 5 \mathrm{~mm}$;
(ii) ray parallel to principal axis through $\mathrm{F}_{2}$;
ray undeviated through pole of lens;
correct extrapolation to marked image;
Do not allow unless image lies between $L_{1}$ and right-hand $F_{1}$.
(b) virtual because rays only appear to come from it;
(c) (compound) microscope;
(d) (i) $\mathrm{L}_{1}$ unchanged;

$$
\mathrm{L}_{2} \text { moved (to right) so that } \mathrm{I}_{1} \text { is at } \mathrm{F}_{2} \text {; }
$$

(ii) angle (subtended) at eye by image is larger than that (subtended) by object;

H2. (a) light must be incident on boundary from the more (optically) dense medium; angle of incidence must be greater than the critical angle;
(b) (i) $i=22^{\circ}$;
$\sin r=1.5 \times \sin 22$

$$
r=34^{\circ} ;
$$

(ii) ray at correct angle (by eye); [1]
(c) e.g. refractive index between core and covering constant; so that refraction in fibre independent of medium in which fibre is placed;
e.g. core of fibre would not become scratched;
(so that) light would not be scattered out of fibre; [2 max]
Award [1] for a sensible reason and [1] for the explanation.
(d) e.g. monochromatic;
so that all light has same speed in fibre;
e.g. can be switched very rapidly;
so that more information can be carried;
e.g. light can be directed;
so that less light losses / less need for amplification;
Award [1] each for two sensible reasons and [1] for each explanation.
Do not allow coherence without explanation.

