M06/4/PHYSI/SP3/ENG/TZ1/XX/M+



) IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

# MARKSCHEME

## May 2006

## PHYSICS

## **Standard Level**

## Paper 3

13 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

[1]

#### **Option A** — Mechanics Extension

A1. (a) total 
$$=\frac{1}{2} \times 0.44 \times 22^{2}$$
;  
+0.44  $\times$  9.8  $\times$  32;  
= 240(244) J;  
Award only 2 out of 3 if  $g = 10 \text{ ms}^{-2}$ .  
[3]

(b) energy at sea level = 
$$244 \times 0.66 = 160 (161) \text{ J}$$
;  
 $v^2 = \frac{(2 \times 161)}{0.44}$   
 $v = 27 \text{ m s}^{-1}$ ; [2]

A2. (a) gravitation / gravity;

(b) gravitational force =  $\frac{GM_1M_2}{(R_1 + R_2)^2}$ ; centripetal force =  $\frac{M_1R_1 \times 4\pi^2}{T^2}$ ; gravitational force provides centripetal force  $\frac{GM_1M_2}{(R_1 + R_2)^2} = \frac{M_1R_1 \times 4\pi^2}{T^2}$ ;  $T^2 = \frac{R_1(R_1 + R_2)^2 \times 4\pi^2}{GM_2}$ [3]

(c) from formula,  $\frac{R_1}{M_2}$  is a constant; (so if  $R_1$  is smaller) then  $M_2$  is smaller /  $M_1$  is larger; [2] Do not award second mark if no reasoning given or argument is fallacious.

| A3. | <ul> <li>A3. (a) <i>e.g.</i> weight of object <u>or</u> reaction force (not mass);<br/>nature of surfaces;<br/>whether stationary / moving (velocity arguments must include zero);<br/><i>Award any other sensible suggestions.</i></li> </ul> |      | [3]                                                                                                                                                |     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (b)                                                                                                                                                                                                                                            | (i)  | R shown acting upwards and normal to slope;                                                                                                        | [1] |
|     |                                                                                                                                                                                                                                                | (ii) | F shown acting upwards and parallel to slope;<br>Lines of action not important as long as they pass through block.                                 | [1] |
|     | (c)                                                                                                                                                                                                                                            | (i)  | (resolving normal to slope) $W \cos \theta = R$ ;<br>(resolving along to slope) $W \sin \theta = \mu R$ ;<br>working to show $\tan \theta = \mu$ ; | [3] |
|     |                                                                                                                                                                                                                                                |      |                                                                                                                                                    |     |

(ii) maximum value of  $\mu$  is 1.0 and  $\tan^{-1} 1.0 = 45^{\circ}$ ; [1]

- 6 -

### **Option B** — **Quantum Physics and Nuclear Physics**

| B1. | (a) | $V_{\rm s}$ gives a measure of (maximum) kinetic energy of electrons;<br>intensity determines rate of production / emission (not energy);                                                                        |                                                                                                               | [2] |  |  |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----|--|--|
|     | (b) | photon energy = work function + maximum kinetic energy of electron;<br>$V_{\rm s} = \frac{hc}{\lambda e} - \frac{\varphi}{e}$ ;<br>gradient is $\frac{hc}{e}$ ;<br>gradient is $1.24(\pm 0.02) \times 10^{-6}$ ; |                                                                                                               |     |  |  |
|     |     | $h = \frac{(1.24 \times 10^{\circ} \times 1.0 \times 10^{\circ})}{(3 \times 10^{\circ})};  \begin{cases} 1 \text{ ward mark for } \\ \text{if this marking} \end{cases}$                                         | point is clear.                                                                                               |     |  |  |
|     |     | $= 6.6(\pm 0.1) \times 10^{-34} \mathrm{Js};$                                                                                                                                                                    |                                                                                                               | [6] |  |  |
| B2. | (a) | used to compare / measure nuclear / atomic masses                                                                                                                                                                | ;;                                                                                                            | [1] |  |  |
|     | (b) | Bainbridge type<br>collimated beam;<br>velocity selector;<br>region of magnetic field and vacuum;<br>suitably placed detector;OrAste<br>coll<br>regi<br>regi<br>suitably placed detector;                        | on type<br>imated beam;<br>on of electric field;<br>on of magnetic field and vacuum;<br>ably placed detector; | [4] |  |  |
|     | (c) | fraction x of mass $35u$ ; ( <i>i.e. some clear explanation</i><br>35x + 37(1-x) = 35.5;<br>x = 0.75;<br>ratio is $\frac{0.75}{0.25} = 3.0$ ;                                                                    | on of working)                                                                                                | [4] |  |  |
|     |     |                                                                                                                                                                                                                  |                                                                                                               |     |  |  |
| B3. | (a) | baryon numbers $+1$ $+1$ $0$ $0;$<br>lepton numbers $0$ $0$ $+1$ $-1;$                                                                                                                                           |                                                                                                               | [2] |  |  |
|     | (b) | mass-energy / charge / spin / momentum / parity / t<br>Do not allow either "mass" or "energy".                                                                                                                   | time conjugation;                                                                                             | [1] |  |  |

[3]

#### **Option C** — Energy Extension

- 8 -

(ii) 
$$V \propto T$$
 and  $T = 290$  K;  
temperature =  $3 \times 290 = 870$  K; [2]  
Award [0] for 51C.

(iii)  $p \propto T$ ; temperature =  $\left(\frac{12.5}{2}\right) \times 290 = 1800$  K; [2] 102C scores [1] out of [2].

(b) external work done = 
$$p\Delta V$$
;  
= 2.0×10<sup>5</sup>×6.0×10<sup>-4</sup>  
= 120 J;

change in internal energy (=300-120)=180 J;

(c) energy supplied to gas (= A → B + B → C) = 550 J; work done going through cycle=120 J/ representing the area under the pressure volume graph; transfer in stage C → A (= 550-120) = 430 J;

| C2. | (a) | orga<br>(part<br>unde | nic/living matter;<br>tial) decomposition;<br>er conditions of "high"(temperature) and pressure;                                                                    | [3]     |
|-----|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | (b) | (i)                   | <i>e.g.</i> renewable energy source;<br>no CO <sub>2</sub> emissions;<br>Do not allow "pollution free"/cost.<br>Award [1] each for any two sensible suggestions.    | [2]     |
|     |     | (ii)                  | <ul> <li><i>e.g.</i> large number of turbines required; covering large area of land;</li> <li><i>e.g.</i> output dependent on wind speed; so unreliable;</li> </ul> |         |
|     |     |                       | e.g. change in local climate;<br>as a result of turbulence;<br>Award [1] each for any two sensible suggestions and [1] for each explanation.                        | [4 max] |

### **Option D** — **Biomedical Physics**

| D1. | (a) | area scales as dimension <sup>2</sup> Or $L^2$ ;<br>volume scales as dimension <sup>3</sup> Or $L^3$ ;                                                                                             | [2]     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     | (b) | <pre>surface area of cylinder &gt; surface area of sphere (for same mass);<br/>rate of energy absorption greater for cylinder;<br/>hence {temperature rises more rapidly} for the same mass;</pre> | [3]     |
| D2. | (a) | <i>conductive</i> : loss occurs in middle ear / damage to membranes / ossicles;<br><i>sensory</i> : loss occurs in inner ear / damage within cochlea / auditory nerve;                             | [2]     |
|     | (b) | (i) (changes in) loudness are response of ear to (changes in) sound intensity; response is (approximately) logarithmic with intensity;                                                             | [2]     |
|     |     | <ul> <li>(ii) loss of hearing is selective;</li> <li>so it is sensory;</li> <li>Do not award mark if fallacious or no argument.</li> </ul>                                                         | [2]     |
|     |     | (iii) $60 = 10 \lg \left( \frac{I}{(1.0 \times 10^{-12})} \right);$<br>$I = 1.0 \times 10^{-6} \text{ W m}^{-2};$                                                                                  | [2]     |
| D3. | (a) | <i>e.g.</i> simple scattering;<br>photoelectric effect;<br>Compton scattering;<br>pair production;<br><i>Allow</i> [1] each for any two mechanisms.                                                | [2 max] |
|     | (b) | (i) thickness of material required to reduce intensity / photon flux by one half;                                                                                                                  | [1]     |
|     |     | (ii) ratio = $0.5^8$ ;<br>= $\frac{1}{256}$ or $3.9 \times 10^{-3}$ ;                                                                                                                              | [2]     |
|     | (c) | ultrasound (nearly all) reflected by bone (boundary) but X-rays can penetrate;<br>X-rays show up internal structures;                                                                              | [2]     |

-9-

## **Option E** — The History and Development of Physics

| E1. | (a) | (precise) positions and times/movements for the (known) planets;                                                                                                                                    | [1] |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (b) | planetary orbits are <u>elliptical</u> rather than circular;<br>with Sun at one focus;                                                                                                              | [2] |
|     | (c) | Newton developed (universal) law of gravitation;<br>law was used to derive Kepler's laws;                                                                                                           | [2] |
| E2. | (a) | wire carrying a current;<br>causes deflection of a compass needle / suspended magnet;                                                                                                               | [2] |
|     | (b) | used two (parallel) current-carrying conductors;<br>(mutual) forces when current in wires;                                                                                                          | [2] |
| E3. | (a) | phlogiston / caloric is a fluid;<br>this flows between bodies when they are at different temperatures;                                                                                              | [2] |
|     | (b) | <i>e.g.</i> thermal energy produced as a result of friction / cannot explain change of phase;<br>further detail regarding stated phenomenon <i>e.g.</i> fluid endless / does not cause temp change; | [2] |
| E4. | (a) | wax blocks placed in neutron beam;<br>protons ejected from wax blocks;<br>emergent radiation examined in cloud chamber;                                                                             | [3] |
|     | (b) | energy / speed of protons measured;<br>in a cloud chamber / by absorption in aluminium;<br>momentum of protons measured;<br>by collision with nitrogen atoms;                                       | [4] |

### **Option F** — Astrophysics

| F1. | (a) | constellation: Pattern of stars;<br>Candidate must indicate that stars are not close together.                                                                                                                                                                                                                                                                                                                                                    |     |  |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|     |     | stellar cluster: group of stars bound by gravitation / in same region of space;                                                                                                                                                                                                                                                                                                                                                                   | [2] |  |
|     | (b) | $d = \frac{1}{0.0077};$<br>= 130 pc                                                                                                                                                                                                                                                                                                                                                                                                               | [1] |  |
|     | (c) | no atmospheric turbulence / irregular refraction;                                                                                                                                                                                                                                                                                                                                                                                                 | [1] |  |
|     | (d) | (i) red/red-orange; (not orange)<br>blue / blue-white / white;                                                                                                                                                                                                                                                                                                                                                                                    | [2] |  |
|     |     | (ii) Betelgeuse looks brighter;                                                                                                                                                                                                                                                                                                                                                                                                                   | [1] |  |
|     |     | (iii) $L = 4\pi bd^2$ ;<br>Rearrangement of formula on data sheet required.<br>$d = 4.0 \times 10^{18}$ m;<br>$L = 4\pi \times 2.0 \times 10^{-7} \times (4.0 \times 10^{18})^2$ ;<br>$L = 4.0 \times 10^{31}$ W:                                                                                                                                                                                                                                 | [4] |  |
|     |     | (iv) $L = 4\pi bd^2$<br>luminosity of Rigel is about half that of Betelgeuse (or ecf from (iii));<br>brightness of Rigel is about 0.1 times that of Betelgeuse;<br>so Rigel is more distant (must be a consistent conclusion from statements<br>about luminosity and brightness);<br>Do not allow mark for fallacious or no argument.<br>Mere statement that luminosity and brightness are less so Rigel is more<br>distant scores [1 mark] only. | [3] |  |
| F2. | (a) | universe is infinite;                                                                                                                                                                                                                                                                                                                                                                                                                             | [1] |  |
|     | (b) | number of stars in shell increases as $R^2$ ;<br>intensity decreases as $\frac{1}{R^2}$ ;<br>brightness of shell is constant;<br>adding all shells to infinity;<br>sky would be as bright as Sun / uniformly bright;                                                                                                                                                                                                                              | 151 |  |
|     |     | Award [2 max] for argument based on any line of sight lands on a star.                                                                                                                                                                                                                                                                                                                                                                            | [3] |  |

#### **Option G** — Relativity

**G1.** (a) means of locating an object in space; [1] observer O: light from flashes arrives simultaneously at O; (b) (i) because takes same time, as measured by O, to reach O / because O is at

- 12 -

rest with respect to A and B;

observer C: flash from A reaches C before flash from B; because speed of light independent of reference frame; [4]

(ii) 
$$\gamma = \frac{9.0}{7.2} = 1.25$$
;  
 $\left(1 - \frac{v^2}{c^2}\right)^{-0.5} = 1.25$ ;  
 $v = 0.6c$ ;  
Award [0] if use of  $\gamma = 0.8$ .  
[3]

**G2.** (a) (i) 
$$1.8c$$
; [1]

(ii) recognize use of 
$$u'_x = \frac{(u_x - v)}{\left(1 - \frac{u_x v}{c^2}\right)};$$

*Allow equation with + in numerator and denominator.* 

``

1

$$u'_{x} = \frac{(c+0.8c)}{\left(1 - \left\{\frac{-0.8c^{2}}{c^{2}}\right\}\right)};$$

$$u'_{x} = c;$$
*Award* [1 max] if substitution gives – sign in numerator or denominator.
[3]

Award [2 max] for a statement "c is same in all frames so  $u'_x = c$ ".

- (b) (according to Maxwell), speed of light independent of speed of source / depends on permittivity and permeability which are constants; this is shown by answer in (a)(ii); [2]
- **G3.** (a) rest mass energy:  $E = m_0 c^2$  where  $m_0$  is the rest mass;

|     | <i>total energy</i> : sum of rest mass energy and kinetic energy;                                                         | [2] |
|-----|---------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | energy = $2 \times 0.51 = 1.02 \text{ MeV}$ ;<br>estimate because only rest-mass energy considered / k.e. not considered; | [2] |
| (c) | curved line through origin always "above" given line after about $0.4c$ ; asymptotic at $v = c$ ;                         | [2] |

### **Option H** — **Optics**

| H1. | (a)                                                                                                                                                                                                                                                                                                                                                                            | (i)                            | correct position by eye but within $\pm 5 \text{ mm}$ ;                                                                                                                                                 | [1]     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|     |                                                                                                                                                                                                                                                                                                                                                                                | (ii)                           | ray parallel to principal axis through $F_2$ ;<br>ray undeviated through pole of lens;<br>correct extrapolation to marked image;<br>Do not allow unless image lies between $L_1$ and right-hand $F_1$ . | [3]     |
|     | (b)                                                                                                                                                                                                                                                                                                                                                                            | virtu                          | al because rays only appear to come from it;                                                                                                                                                            | [1]     |
|     | (c)                                                                                                                                                                                                                                                                                                                                                                            | (con                           | npound) microscope;                                                                                                                                                                                     | [1]     |
|     | (d)                                                                                                                                                                                                                                                                                                                                                                            | (i)                            | $L_1$ unchanged;<br>$L_2$ moved (to right) so that $I_1$ is at $F_2$ ;                                                                                                                                  | [2]     |
|     |                                                                                                                                                                                                                                                                                                                                                                                | (ii)                           | angle (subtended) at eye by image is larger than that (subtended) by object;                                                                                                                            | [1]     |
| Н2. | (a)                                                                                                                                                                                                                                                                                                                                                                            | light<br>angl                  | must be incident on boundary from the more (optically) dense medium;<br>e of incidence must be greater than the critical angle;                                                                         | [2]     |
|     | (b)                                                                                                                                                                                                                                                                                                                                                                            | (i)                            | $i = 22^{\circ};$<br>$\sin r = 1.5 \times \sin 22$<br>$r = 34^{\circ};$                                                                                                                                 | [2]     |
|     |                                                                                                                                                                                                                                                                                                                                                                                | (ii)                           | ray at correct angle (by eye);                                                                                                                                                                          | [1]     |
|     | <ul> <li>(c) <i>e.g.</i> refractive index between core and covering constant; so that refraction in fibre independent of medium in which fibre is placed;</li> <li><i>e.g.</i> core of fibre would not become scratched;</li> <li>(so that) light would not be scattered out of fibre;</li> <li><i>Award</i> [1] for a sensible reason and [1] for the explanation.</li> </ul> |                                |                                                                                                                                                                                                         |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                |                                | hat) light would not be scattered out of fibre;<br>rd [1] for a sensible reason and [1] for the explanation.                                                                                            | [2 max] |
|     | (d)                                                                                                                                                                                                                                                                                                                                                                            | <i>e.g.</i> so th              | monochromatic;<br>at all light has same speed in fibre;                                                                                                                                                 |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                | <i>e.g.</i> o<br>so th         | can be switched very rapidly;<br>at more information can be carried;                                                                                                                                    |         |
|     |                                                                                                                                                                                                                                                                                                                                                                                | e.g. 1<br>so th<br>Awa<br>Do n | light can be directed;<br>hat less light losses / less need for amplification;<br>and [1] each for two sensible reasons and [1] for each explanation.<br>hot allow coherence without explanation.       | [4 max] |