M06/4/PHYSI/SP2/ENG/TZ2/XX/M

) IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

PHYSICS

Standard Level

Paper 2

11 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

correct line of best fit; The line should go through a majority of the points.

- (b) from the graph breaking load = $8.5(\pm 0.1) \times 10^{-2}$ N; breaking stress = $\frac{8.5 \times 10^{-2}}{3.14 \times (4.5)^2 \times 10^{-12}} = 1.3 \times 10^9$ Pa or Nm⁻²; some statement of conclusion;
- (c) (i) work = area under graph; between $(2.4 \times 10^{-2}, 1.6 \times 10^{-2})$ and $(5.6 \times 10^{-2}, 8.5 \times 10^{-2})$; $= (1.6 \times 3.2) \times 10^{-4} + \frac{1}{2}(3.2 \times 6.9) \times 10^{-4}$; $= 1.6 \times 10^{-3} \text{ J}$ If incorrect line of best fit in (a), allow first marking point only. or work = average force × distance/displacement/extension; average force = $5.1 \times 10^{-2} \text{ N}$; extension = $3.2 \times 10^{-2} \text{ m}$; to give $1.6 \times 10^{-3} \text{ J}$

SECTION A

- 3 -

[1]

[3]

[3]

(ii) KE of insect = work needed to break web = 1.6×10^{-3} J;

$$v = \sqrt{\frac{2\text{KE}}{m}};$$

= $\sqrt{\frac{3.2 \times 10^{-3}}{1.5 \times 10^{-4}}} = 4.6 \,\text{ms}^{-1};$ [3]

No ECF from (c)(i) i.e. the value 1.6×10^{-3} J must be used.

A2. (a) medium 1;

wavelength is greater than in medium 2; and $c = f\lambda$ and frequency is same in both media; [3] Award [1] if the candidate answers medium 2, because wavelength is greater. Award [1] for correct medium and mention of bending towards normal when entering medium 2. Award [0] for correct medium but incorrect or no explanation.

(b) measurement of wavelength: 2 = 2.5 cm:

$$\lambda_{1} = 2.5 \text{ cm};$$

 $\lambda_{2} = 1.0 \text{ cm};$
 $\frac{c_{1}}{c_{2}} = \frac{\lambda_{1}}{\lambda_{2}} = 2.5(\pm 0.2);$

or

measurement of incident and refraction angles:

$$\theta_1 = 60^\circ;$$

$$\theta_2 = 20^\circ;$$

$$\frac{c_1}{c_2} = \frac{\sin \theta_1}{\sin \theta_2} = 2.5;$$

[3]

Award [2] if the candidate gets it the wrong way round in either method, but they must have answered medium 2 in (a).

[2]

[1]

A3. (a)

overall correct shape with no field lines touching; direction of field;

- (b) <u>bar</u> magnet / solenoid; *Do not accept just "magnet"*.
- (c) (i) upwards the direction of the compass needle is the resultant of two fields / OWTTE; the field must be into the plane of the (exam) paper to produce a resultant field in the direction shown / OWTTE; Award [1] for "upwards because of the right hand rule" / OWTTE.

vector addition with correct values of two angles shown 30° , 60° or 90° ;

from diagrams
$$B_{\rm E} = B_{\rm W} \times \tan 60$$
 or $B_{\rm E} = \frac{B_{\rm W}}{\tan 30}$; [2]

(iii)
$$B_{\rm W} = \frac{\mu_0 I}{2\pi r} = \frac{2 \times 10^{-7} \times 4}{2 \times 10^{-2}} = 4.0 \times 10^{-5} \,\mathrm{T};$$

 $B_{\rm E} = B_{\rm W} \times \tan 60 = 6.9 \times 10^{-5} \,\mathrm{T};$ [2]

SECTION B

B1. Part 1 Travelling and standing waves

- (a) no energy is propagated along a standing wave / OWTTE;
 the amplitude of a standing wave varies along the wave / standing wave has nodes and antinodes;
 in standing wave particles are either in phase or in antiphase / OWTTE;
 [2 max]
- (b) Look for these main points.

when the tube is vibrated, a wave travels along the tube and is reflected at B; the wave is inverted on reflection; the reflected wave interferes with the forward wave; the maximum displacements occurs midway between A and B; since there is always a node at A and B, then the pattern shown will be produced / *OWTTE*; [5] *Award* [1] for essentially two waves in opposite directions, [1] for π out of phase, [1] for interference and [2] for condition to produce shape.

(c) (i)
$$f = \frac{v}{\lambda};$$

to get $f = \text{constant}\sqrt{T}$ since λ constant; therefore, a plot of f^2 against T or f against \sqrt{T} ; should produce a straight-line through the origin / OWTTE; [4]

(ii) $\lambda = 4.8 \,\mathrm{m}$;

$$v = f\lambda = 1.8 \times 4.8 = 8.6 \,\mathrm{m\,s^{-1}};$$

$$k = \frac{v}{\sqrt{T}} \frac{8.6}{3} = 2.9;$$
[3] Ignore any unit.

B1. Part 2 Mechanical power

(a) the rate of working / work ÷ time; [1] If equation is given, then symbols must be defined.

(b)
$$P = \frac{W}{t} = \frac{F \times d}{t};$$

 $v = \frac{d}{t}$ therefore, $P = Fv;$ [2]

(c) (i)
$$t = \frac{d}{v};$$

= $\frac{4800}{16} = 300 s;$ [2]

(ii)
$$W = mgh = 1.2 \times 10^4 \times 300 = 3.6 \times 10^6 \text{ J};$$
 [1]

- (iii) work done against friction = $4.8 \times 10^3 \times 5.0 \times 10^2$; total work done = $2.4 \times 10^6 + 3.6 \times 10^6$; total work done = $P \times t = 6.0 \times 10^6$; to give $P = \frac{6 \times 10^6}{300} = 20 \,\text{kW}$; [4]
- (iv) the engine also has to overcome friction in the moving parts of the car / *OWTTE;* [1]

B2.	(a)	the energy required to assemble a nucleus / to separate the nucleus / <i>OWTTE</i> ; from its constituent parts / into its individual component / <i>OWTTE</i> ;	[2]
	(b)	fission;	[1]
	(c)	(i) $\frac{1}{12}$ th mass of ¹² C atom/nuclide;	[1]
		(ii) mass of LHS = $235.0439 + 1.0087 = 236.0526u$; mass of RHS = $95.9342 + 137.9112 + 2 \times 1.0087 = 235.8628u$; LHS - RHS = $0.1898u$; = $0.1898 \times 932 = 176.9$ MeV;	[4]
	(d)	they can initiate a chain reaction; the two neutrons can react with two other nuclei to produce four neutrons <i>etc.</i> ; <i>Award</i> [1] for mention of chain reaction and [1] for explanation of chain reaction.	[2]
	(e)	kinetic energy (of the Rb and Cs nuclei); gamma radiation;	[2]
	(f)	if the net external force acting on a system is zero / for an isolated system of interacting particles; the momentum of the system is constant; <i>Award</i> [1] for momentum before collision equals momentum after collision.	[2]
	(g)	2.00 MeV = 3.20×10^{-13} J; $v = \sqrt{\frac{2E}{m}} = \sqrt{\frac{6.40 \times 10^{13}}{1.68 \times 10^{-27}}}$; = 1.95×10^7 ms ⁻¹	[2]
	(h)	(i) momentum of neutron before = $1.95 \times 10^7 m$;	[-]
		momentum of neutron after = $-1.65 \times 10^7 m$; therefore, $1.95 \times 10^7 m = -1.65 \times 10^7 m + 12 mv$; to give $v = 0.30 \times 10^7 m s^{-1}$ If the candidates go straight to the third marking point do not penalize them.	[3]
		(ii) $KE_{before} = \frac{1}{2}(1.95)^2 m = 1.90 m \text{ or } 3.19 \times 10^{-13} J;$ $KE_{after} = \frac{1}{2}(1.65)^2 m + 6(0.3)^2 m = 1.90 m \text{ or } 3.19 \times 10^{-13} J;$ collision is elastic since $KE_{before} = KE_{after};$ <i>Accept argument based on approach velocity=separation velocity.</i>	[3]
		(iii) loss in KE = $6(0.3)^2 m = 0.54 m$ or $9.07 \times 10^{-14} \text{ J}$; fractional loss = $\frac{0.54}{1.90}$ or $\frac{0.91 \times 10^{-13}}{3.19 \times 10^{-13}} = 0.285 \approx 0.3(30\%)$;	[2]
		(iv) $0.21/0.20/\frac{2}{9}$;	[1]

- 8 -

B3. Part 1 Ideal gas behaviour

(a) when the gas is heated the average KE of the molecules increases; therefore, their <u>average</u> speed increases; therefore, they strike the container walls with greater frequency / with greater speed / rate of momentum change on collision with container walls is greater / OWTTE; [3] Award [2 max] if no mention of "average".

(b) (i)
$$P \propto \frac{1}{V}$$
 or $V \propto \frac{1}{P}$ or pV = constant or pressure inversely proportional to volume etc.; [1]

(ii)
$$V \propto T \text{ etc.};$$
 [1]

(c) (i)
$$\frac{P_1}{T_1} = \frac{P_2}{T'}$$
 or $P_1 T' = P_2 T_1$; [1]

(ii)
$$\frac{V_1}{T'} = \frac{V_2}{T_2}$$
 or $V_1 T_2 = V_2 T'$; [1]

(d) from (i)
$$T' = \frac{P_2 T_1}{P_1}$$
;
from (ii) $T' = \frac{V_1 T_2}{V_2}$;
equate to get $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$;
so that $\frac{PV}{T} = \text{constant} \quad or \quad PV = KT$; [4]

(e)
$$\frac{PV}{T} = K$$
;

substitute
$$\frac{2.00 \times 10^5 \times 2.49 \times 10^{-2}}{300} = 16.6$$
;
recognize that $K = nR$ so $n = 2$;
therefore, mass = $2 \times 40 = 80$ g;

[4]

Part 2 **Electrical circuits** correct labelling of A and V; (a) (i) [1] (ii) P on resistor at "bottom"; [1] (b) $I = 0.40 \,\mathrm{A};$ (i) $R = \frac{V}{I} = \frac{10}{0.40} = 25\Omega;$ [2] (ii) the rate of increase of *I* decreases with increasing V / OWTTE; because: the conductor is (probably) heating up as the current increases / OWTTE; and resistance (of a conductor) increases with increasing temperature; [3] resistance of Y at $0.20 \text{ A} = 12.5 \Omega$; [1] (c) (i) (ii) total series resistance = $12.5 + 25 = 37.5 \Omega$; total pd across resistance = $0.2 \times 37.5 = 7.5$ V = e.m.f.; [2]