MARKSCHEME

May 2006

PHYSICS

Standard Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

A1. (a)

correct line of best fit;
The line should go through a majority of the points.
(b) from the graph breaking load $=8.5(\pm 0.1) \times 10^{-2} \mathrm{~N}$;
breaking stress $=\frac{8.5 \times 10^{-2}}{3.14 \times(4.5)^{2} \times 10^{-12}}=1.3 \times 10^{9} \mathrm{~Pa}$ or $\mathrm{N} \mathrm{m}^{-2}$;
some statement of conclusion;
(c) (i) work = area under graph;
between $\left(2.4 \times 10^{-2}, 1.6 \times 10^{-2}\right)$ and $\left(5.6 \times 10^{-2}, 8.5 \times 10^{-2}\right)$;
$=(1.6 \times 3.2) \times 10^{-4}+\frac{1}{2}(3.2 \times 6.9) \times 10^{-4}$;
$=1.6 \times 10^{-3} \mathrm{~J}$
If incorrect line of best fit in (a), allow first marking point only.
or
work $=$ average force \times distance/displacement/extension;
average force $=5.1 \times 10^{-2} \mathrm{~N}$;
extension $=3.2 \times 10^{-2} \mathrm{~m}$;
to give $1.6 \times 10^{-3} \mathrm{~J}$
(ii) KE of insect = work needed to break web $=1.6 \times 10^{-3} \mathrm{~J}$;

$$
\begin{aligned}
& v=\sqrt{\frac{2 \mathrm{KE}}{m}} \\
& =\sqrt{\frac{3.2 \times 10^{-3}}{1.5 \times 10^{-4}}}=4.6 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

No ECF from (c)(i) i.e. the value $1.6 \times 10^{-3} \mathrm{~J}$ must be used.

A2. (a) medium 1;
wavelength is greater than in medium 2 ;
and $c=f \lambda$ and frequency is same in both media;
Award [1] if the candidate answers medium 2, because wavelength is greater. Award [1] for correct medium and mention of bending towards normal when entering medium 2. Award [0] for correct medium but incorrect or no explanation.
(b) measurement of wavelength:
$\lambda_{1}=2.5 \mathrm{~cm}$;
$\lambda_{2}=1.0 \mathrm{~cm}$;
$\frac{c_{1}}{c_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=2.5(\pm 0.2) ;$
or
measurement of incident and refraction angles:
$\theta_{1}=60^{\circ}$;
$\theta_{2}=20^{\circ}$;
$\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=2.5$;
Award [2] if the candidate gets it the wrong way round in either method, but they must have answered medium 2 in (a).

A3. (a)

overall correct shape with no field lines touching;
direction of field;
(b) bar magnet / solenoid;

Do not accept just "magnet".
(c) (i) upwards
the direction of the compass needle is the resultant of two fields / OWTTE;
the field must be into the plane of the (exam) paper to produce a resultant field in the direction shown / OWTTE;
Award [1] for "upwards because of the right hand rule" / OWTTE.
(ii)

or

vector addition with correct values of two angles shown $30^{\circ}, 60^{\circ}$ or 90°;
from diagrams $B_{\mathrm{E}}=B_{\mathrm{w}} \times \tan 60$ or $B_{\mathrm{E}}=\frac{B_{\mathrm{W}}}{\tan 30}$;
(iii) $B_{\mathrm{w}}=\frac{\mu_{0} I}{2 \pi r}=\frac{2 \times 10^{-7} \times 4}{2 \times 10^{-2}}=4.0 \times 10^{-5} \mathrm{~T}$;

$$
B_{\mathrm{E}}=B_{\mathrm{w}} \times \tan 60=6.9 \times 10^{-5} \mathrm{~T} ;
$$

SECTION B

B1. Part 1 Travelling and standing waves
(a) no energy is propagated along a standing wave / OWTTE;
the amplitude of a standing wave varies along the wave / standing wave has nodes and antinodes;
in standing wave particles are either in phase or in antiphase / OWTTE;
(b) Look for these main points.
when the tube is vibrated, a wave travels along the tube and is reflected at B;
the wave is inverted on reflection;
the reflected wave interferes with the forward wave;
the maximum displacements occurs midway between A and B ;
since there is always a node at A and B , then the pattern shown will be produced / OWTTE;
Award [1] for essentially two waves in opposite directions, [1] for π out of phase,
[1] for interference and [2] for condition to produce shape.
(c) (i) $f=\frac{v}{\lambda}$;
to get $f=$ constant \sqrt{T} since λ constant;
therefore, a plot of f^{2} against T or f against \sqrt{T};
should produce a straight-line through the origin / OWTTE;
(ii) $\lambda=4.8 \mathrm{~m}$;
$v=f \lambda=1.8 \times 4.8=8.6 \mathrm{~m} \mathrm{~s}^{-1}$;
$k=\frac{v}{\sqrt{T}} \frac{8.6}{3}=2.9$;
Ignore any unit.

B1. Part 2 Mechanical power
(a) the rate of working / work \div time;

If equation is given, then symbols must be defined.
(b) $\quad P=\frac{W}{t}=\frac{F \times d}{t}$;
$v=\frac{d}{t}$ therefore, $P=F v ;$
(c) (i) $t=\frac{d}{v}$;

$$
=\frac{4800}{16}=300 \mathrm{~s} \text {; }
$$

(ii) $W=m g h=1.2 \times 10^{4} \times 300=3.6 \times 10^{6} \mathrm{~J}$;
(iii) work done against friction $=4.8 \times 10^{3} \times 5.0 \times 10^{2}$;
total work done $=2.4 \times 10^{6}+3.6 \times 10^{6}$;
total work done $=P \times t=6.0 \times 10^{6}$;
to give $P=\frac{6 \times 10^{6}}{300}=20 \mathrm{~kW}$;
(iv) the engine also has to overcome friction in the moving parts of the car / OWTTE;

B2. (a) the energy required to assemble a nucleus / to separate the nucleus / OWTTE; from its constituent parts / into its individual component / OWTTE;
(b) fission;
(c) (i) $\frac{1}{12}$ th mass of ${ }^{12} \mathrm{C}$ atom/nuclide;
(ii) mass of LHS $=235.0439+1.0087=236.0526 u$; mass of RHS $=95.9342+137.9112+2 \times 1.0087=235.8628 u$; LHS - RHS $=0.1898 u$; $=0.1898 \times 932=176.9 \mathrm{MeV}$;
(d) they can initiate a chain reaction;
the two neutrons can react with two other nuclei to produce four neutrons etc.;
Award [1] for mention of chain reaction and [1] for explanation of chain reaction.
(e) kinetic energy (of the Rb and Cs nuclei); gamma radiation;
(f) if the net external force acting on a system is zero / for an isolated system of interacting particles;
the momentum of the system is constant;
Award [1] for momentum before collision equals momentum after collision.
(g) $\quad 2.00 \mathrm{MeV}=3.20 \times 10^{-13} \mathrm{~J}$;

$$
\begin{aligned}
& v=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{6.40 \times 10^{13}}{1.68 \times 10^{-27}}} ; \\
& =1.95 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

(h) (i) momentum of neutron before $=1.95 \times 10^{7} \mathrm{~m}$;
momentum of neutron after $=-1.65 \times 10^{7} \mathrm{~m}$;
therefore, $1.95 \times 10^{7} \mathrm{~m}=-1.65 \times 10^{7} \mathrm{~m}+12 \mathrm{mv}$;
to give $v=0.30 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
If the candidates go straight to the third marking point do not penalize them.
(ii) $\mathrm{KE}_{\text {before }}=\frac{1}{2}(1.95)^{2} m=1.90 \mathrm{~m}$ or $3.19 \times 10^{-13} \mathrm{~J}$;
$\mathrm{KE}_{\text {after }}=\frac{1}{2}(1.65)^{2} m+6(0.3)^{2} m=1.90 m$ or $3.19 \times 10^{-13} \mathrm{~J}$;
collision is elastic since $\mathrm{KE}_{\text {before }}=\mathrm{KE}_{\text {after }}$;
Accept argument based on approach velocity=separation velocity.
(iii) loss in $\mathrm{KE}=6(0.3)^{2} \mathrm{~m}=0.54 \mathrm{~m}$ or $9.07 \times 10^{-14} \mathrm{~J}$;
fractional loss $=\frac{0.54}{1.90}$ or $\frac{0.91 \times 10^{-13}}{3.19 \times 10^{-13}}=0.285 \approx 0.3(30 \%) ;$
(iv) $0.21 / 0.20 / \frac{2}{9}$;

B3. Part 1 Ideal gas behaviour
(a) when the gas is heated the average KE of the molecules increases; therefore, their average speed increases;
therefore, they strike the container walls with greater frequency / with greater speed / rate of momentum change on collision with container walls is greater / OWTTE;
Award [$2 \boldsymbol{m a x}$] if no mention of "average".
(b) (i) $P \propto \frac{1}{V}$ or $V \propto \frac{1}{P}$ or $p V=$ constant or pressure inversely proportional to volume etc.; [1]
(ii) $\quad V \propto T$ etc.;
(c) (i) $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T^{\prime}}$ or $P_{1} T^{\prime}=P_{2} T_{1}$;
(ii) $\frac{V_{1}}{T^{\prime}}=\frac{V_{2}}{T_{2}}$ or $V_{1} T_{2}=V_{2} T^{\prime} ;$
(d) from (i) $T^{\prime}=\frac{P_{2} T_{1}}{P_{1}}$;
from (ii) $T^{\prime}=\frac{V_{1} T_{2}}{V_{2}}$;
equate to get $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$;
so that $\frac{P V}{T}=$ constant or $P V=K T$;
(e) $\frac{P V}{T}=K$;
substitute $\frac{2.00 \times 10^{5} \times 2.49 \times 10^{-2}}{300}=16.6$;
recognize that $K=n R$ so $n=2$;
therefore, mass $=2 \times 40=80 \mathrm{~g}$;

Part 2 Electrical circuits

(a) (i) correct labelling of A and V; [1]
(ii) P on resistor at "bottom"; [1]
(b) (i) $\quad I=0.40 \mathrm{~A}$;
$R=\frac{V}{I}=\frac{10}{0.40}=25 \Omega$;
(ii) the rate of increase of I decreases with increasing $V /$ OWTTE;
because: the conductor is (probably) heating up as the current increases / OWTTE; and resistance (of a conductor) increases with increasing temperature;
(c) (i) resistance of Y at $0.20 \mathrm{~A}=12.5 \Omega$; [1]
(ii) total series resistance $=12.5+25=37.5 \Omega$; total pd across resistance $=0.2 \times 37.5=7.5 \mathrm{~V}=$ e.m.f.;

