

MARKSCHEME

November 2001

PHYSICS

Standard Level

Paper 2

[1] [1] [2 max]

SECTION A

- A1. (a) recognise to use $P = I^2 R$; correct substitution to give P = 1.8 W;
 - (b) error in $I^2 = 4\%$; [1] error in $I^2R = 14\%$; [1] therefore absolute uncertainty = ± 0.3 W; [1] [3 max]

labelled axes with correct units;	[1]
suitable scale (should fill at least half the grid);	[1]
data points (zero point must be included);	[1]
best fit line;	[1]
	[4 max]

(d)
$$4 \Omega (\pm 1\Omega)$$

[1 max]

(e) yes; [1] because of the large error in determining the actual maximum of the graph; [1] OWTTE

[2 max]

A2. (a) (i) use
$$v = \sqrt{2gh}$$
 to get 4.0 m s⁻¹ [1 max]

(ii) use
$$v = \sqrt{2gh}$$
 to get 3.5 m s⁻¹ [1 max]

- (iii) $\Delta p = m\Delta v = 0.2 \times 7.5;$ [1] = 1.5 N s; (Award [1] for 0.1 N s and use e.c.f. in (b) below.) [2 max]
- (b) (i) the total change in momentum (accept impulse) [1 max]
 - (ii) total momentum = $\frac{1}{2}$ 50× Δt = 1.5 N s; [1] to give Δt = 0.06 s; [1]
 - e.c.f. from above gives $\Delta t = 0.004 s$; [2 max]

[1] [1] [2 max]

A3.	(a)	a) ${}^{14}_{7}N + {}^{1}_{0}n = {}^{14}_{6}C + {}^{1}_{1}H$		
	(b)	(i)	since C-14 is radioactive it will transmute to another element OWTTE;	[1 max]

(ii) recognise that this is 2 half-lives;
 $age = 2 \times 5600 = 11200$ years;[1]
[1]
[2 max]

SECTION B

B1. Part 1.

(a)	<i>look for an answer along the following lines:</i> temperature is a measure of the average KE of the molecules so is temperature is constant the average KE will not change; if energy is being supplied and the KE is not changing the PE must be increased	f the [1] asing: [1] [2 max]
(b)	(i) 400 g	[1 max]
	(ii) $Q = mL = 0.4 \times 2.3 \times 10^6$ (<i>i.e.</i> formula and correct substitution); = 9.2×10^5 J;	[1] [1] [2 max]
	(iii) rate = $\frac{\text{energy}}{\text{time}}$; = $\frac{9.2 \times 10^5}{900}$; ~ 1000 W	[1] [1]
	- 1000 W	[2 max]
	(iv) because of all the energy losses to the surroundings OWTTE;	[1 max]
(c)	use $\frac{dQ}{dt} = -kA\frac{d\theta}{dx}$;	[1]
	correct substitution $1000 = \frac{200 \times 5 \times 10^{-2} \times d\theta}{6 \times 10^{-3}};$	[1]
	to give $d\theta = 0.6$ °C;	[1] [3 max]
(d)	Any sensible discussion of appropriate physics <i>e.g.</i> only a small amount of the base is actually in contact with the burner; so there will be a layer of air between the burner and the base that accoun most of the temperature drop (<i>or air is a poor conducto</i> r) aluminium is a good conductor	<i>[2]</i> ts for
	flame has to be a higher temperature than base for energy transfer to take pla	ace; [2 max]
(e)	energy supplied to water = $1000 \times 315 \text{ J}$;	[1]
	energy used to heat water = 4200×70 ;	[1]
	and an minimum = $0.23 \times 3 \times 70^{\circ}$; (1000 × 315 – 4200 × 70)	[1]
		(1)

B1. Part 2

(a) $F_{\rm B}$ $F_{\rm E}$

 electric;
 [1]

 magnetic;
 [1]

 [2 max]

(b) (i) electric force
$$F_{\rm E} = qE$$
 [1 max]

(ii) magnetic force
$$F_{\rm B} = Bqv$$
 [1 max]

(c) for no deflection $F_{\rm E} = F_{\rm B}$; [1]

to give
$$v = \frac{E}{B}$$
; [1]

[2 max]

(d) at any point along the path the magnetic force is at right angles to the velocity of the ion; and the speed of the ion is constant; OWTTE; e.g. 'there is a force acting at right angles to the velocity of the ion and this will produce a constant centripetal acceleration since the velocity is constant'. An answer such as 'the force is at right angles' would be worth [1]. Look for a bit more detail for [2].

[2 max]

(ii) negative cosine graph

(d)

correct position of A and B

[1 max]

[1 max]

(ii)
$$\lambda = \frac{c}{f};$$
 [1]
= 4.5 cm; [2 max]

	correct position of B at the boundary;	[1]
	position of A showing that the wave is refracted away from the normal;	[1]
		[2 max]
(iv)	recognise that the refractive index is ratio of the speeds;	[1]
	to give $n=1.5$;	[1]
	use $1.5 = \frac{\sin r}{\sin 35^\circ}$;	[1]
	to give $r = 59^{\circ}$;	[1] [4 max]
(v)	the wave fronts will be totally reflected at the boundary;	[1]
	since critical angle = $\sin^{-1}\left(\frac{1}{n}\right)$;	[1]
	$r = 42^{\circ};$	[1]
	hence waves are incident at an angle greater that critical angle;	[1]
		[4 max]

(f) (i)

Argument should go something like this:

waves from S_1 and S_2 travel different distances to different points on AB	
they will therefore be out of phase at a particular point;	[1]
if the phase difference is such that a trough meets a crest then the individual wave amplitudes will add to cancel out-minimum;	[1]
if a crest meets crest (trough meets trough) then they will add to a maximum;	[1]

[4 max]

B3 .	(a)	let $d = \mathbf{k}v^2$;	[1]
		choose $v = 20$, $d = 60$ to give $k = 0.15$;	[1]
		choose $v = 30$, $d = 135$ to give $k = 0.15$;	[1]
		since k is the same d is proportional to v^2 ; (<i>i.e. they should show that they understand the proportionality and then use two points to verify this proportionality.</i>)	[1]

[4 max]

[1]

[1]

[1]

(b)	candidates could use a KE – work done argument or kinematic argument
	e.g. $\Delta(\text{KE}) = \frac{1}{2}mv^2 = Fd$;
	where F is the braking force;
	if the braking force F is constant then $d \propto v^2$;

or

if F is constant than a is constant;	[1]
so $v^2 = u^2 + 2ad$;	[1]
$v = 0$ therefore $d \propto u^2$;	[1]
	[3 max]

(i) from the graph d = 60 m; [1] (c)

average speed = 10 m s^{-1} ;	[1]

$$t = \frac{60}{10} = 6.0 \,\mathrm{s} \,; \tag{1}$$

or

from the graph d=60 m; [1] use $v^2 = u^2 + 2ad$ to give $a = 3.3 \text{ m s}^{-2}$; use v = u + at to give t = 6.1 s (6.0 s); [1] [1] [3 max]

(ii) use
$$v^2 = u^2 + 2ad$$
 to find *a*; [1]
to give $a = 3.3 \text{ m s}^{-2}$; [1]
use $F = m a$ to give $F = 5000 \text{ N}$; [1]
If they have calculated *a* in (i) then this is easier for them!

use
$$Fd = \frac{1}{2} mv^2$$
; [1]

$$=\frac{1}{2}(1500)\times(20)^{2};$$
[1]

to give F = 5000 N; [1]

[3 max]

(d)	reaction time or explanation of w (<i>i.e. something</i> 1	thinking tim what this is; <i>like 'when a</i>	e; driver sees	an inciden	t that caus	ses him to bra	[1] [1] ike it
	takes some time	before he red	acts' receives	5 [2] but jus	st 'reaction	time' receives	[1]) [2 max]
(e)	300						
	250						
	200						
	d 150						
	100						
	50						
	0	10	20	20	40	50	
	0	10	20 v	30	40	50	
	rough correct sh	ape;	oonstant:				[1]
	therefore each po	bint on the b	raking distan	ce graph w	vill be incre	eased by an am	iount
	OWTTE	ie speed;					[1]
							[3 max]
(f)	greater;						[1]
	there is now a co	omponent of	weight actin	g against tl	he braking	force;	[1] [2 max]
		10000					
(g)	time to travel 12	$km = \frac{12000}{40}$	$-=300\mathrm{s};$				[1]
	therefore rate at	which fuel is	s used $= 0.00$	$331 \mathrm{s}^{-1};$			[1] [2 max]
(h)	enerov released	ner second h	w the fuel- 3	$5 \times 10^{6} \times 0^{10}$	0033		
(11)	energy released		j the fuel- j				

 $=1.2\times10^{5}$ W; [1]

25 % of this = 3×10^4 ; therefore power output = 30 kW; [1] [2 max]

(i) drag force
$$=\frac{P}{v} = 7.5 \times 10^2 \text{ N}$$
 [1 max]