MARKSCHEME

November 2001

PHYSICS

Standard Level

Paper 2

SECTION A

A1. (a) recognise to use $P=I^{2} R$; [1]
correct substitution to give $P=1.8 \mathrm{~W}$;
[1]
(b) error in $I^{2}=4 \%$;
error in $I^{2} R=14 \%$ [1]
therefore absolute uncertainty $= \pm 0.3 \mathrm{~W}$;
(c)

labelled axes with correct units;
[1]
suitable scale (should fill at least half the grid);
data points (zero point must be included);
best fit line;
(d) $4 \Omega(\pm 1 \Omega)$
(e) yes;
because of the large error in determining the actual maximum of the graph;

A2. (a) (i) use $v=\sqrt{2 g h}$ to get $4.0 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) use $v=\sqrt{2 g h}$ to get $3.5 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) $\Delta p=m \Delta v=0.2 \times 7.5$;
$=1.5 \mathrm{~N} \mathrm{~s}$;
(b) (i) the total change in momentum (accept impulse)
(ii) total momentum $=\frac{1}{2} 50 \times \Delta t=1.5 \mathrm{~N} \mathrm{~s}$;
to give $\Delta t=0.06 \mathrm{~s}$;
e.c.f. from above gives $\Delta t=0.004 \mathrm{~s}$;
(c) (i)

smaller contact time;
greater maximum force;
A3. (a) ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}={ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$
(b) (i) since C-14 is radioactive it will transmute to another element [1 max] OWTTE;
(ii) recognise that this is 2 half-lives; [1] age $=2 \times 5600=11200$ years;

SECTION B

B1. Part 1.

(a) look for an answer along the following lines:
temperature is a measure of the average KE of the molecules so if the temperature is constant the average KE will not change;
if energy is being supplied and the KE is not changing the PE must be increasing:
(b) (i) 400 g
(ii) $Q=m \mathrm{~L}=0.4 \times 2.3 \times 10^{6}$ (i.e. formula and correct substitution);
$=9.2 \times 10^{5} \mathrm{~J}$;
[1]
(iii) rate $=\frac{\text { energy }}{\text { time }}$;

$$
\begin{align*}
& =\frac{9.2 \times 10^{5}}{900} \tag{1}\\
& \simeq 1000 \mathrm{~W}
\end{align*}
$$

(iv) because of all the energy losses to the surroundings
(c) use $\frac{d Q}{d t}=-k A \frac{d \theta}{d x}$;
correct substitution $1000=\frac{200 \times 5 \times 10^{-2} \times d \theta}{6 \times 10^{-3}}$;
to give $d \theta=0.6^{\circ} \mathrm{C}$;
(d) Any sensible discussion of appropriate physicse.g.
only a small amount of the base is actually in contact with the burner;
so there will be a layer of air between the burner and the base that accounts for most of the temperature drop (or air is a poor conductor)
aluminium is a good conductor
flame has to be a higher temperature than base for energy transfer to take place;
(e) energy supplied to water $=1000 \times 315 \mathrm{~J}$;
energy used to heat water $=4200 \times 70$; [1]
and aluminium $=0.25 \times s \times 70$; [1]
therefore $s=\frac{(1000 \times 315-4200 \times 70)}{(0.25 \times 70)}=1200 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$;

B1. Part 2

(a)

electric;
magnetic;
(b) (i) electric force $F_{\mathrm{E}}=q E$
(ii) magnetic force $F_{\mathrm{B}}=B q v$
(c) for no deflection $F_{\mathrm{E}}=F_{\mathrm{B}}$;
to give $v=\frac{E}{B}$;
(d) at any point along the path the magnetic force is at right angles
to the velocity of the ion;
and the speed of the ion is constant;
OWTTE;
e.g. 'there is a force acting at right angles to the velocity of the ion and this will produce a constant centripetal acceleration since the velocity is constant'. An answer such as 'the force is at right angles' would be worth [1]. Look for a bit more detail for [2].

B2. (a)

λ on diagram
(b) $\lambda=3 \mathrm{~cm}$
(c) (i) period $=0.1 \mathrm{~s}$;
(ii) negative cosine graph
(d)

correct position of A and B
(e) (i) 10 Hz
(ii) $\lambda=\frac{c}{f}$;
$=4.5 \mathrm{~cm}$;
(iii)

correct position of B at the boundary;
position of A showing that the wave is refracted away from the normal;
(iv) recognise that the refractive index is ratio of the speeds; [1]
to give $\mathrm{n}=1.5$;
use $1.5=\frac{\sin r}{\sin 35^{\circ}}$;
to give $r=59^{\circ}$;
(v) the wave fronts will be totally reflected at the boundary; [1]
since critical angle $=\sin ^{-1}\left(\frac{1}{n}\right)$;
$r=42^{\circ}$;
hence waves are incident at an angle greater that critical angle;
(f) (i)

correct shape;
position of X coincident with a central maxima;
(ii) when two or more waves meet at a point;
the resulting amplitude at that point is the vector sum of the individual amplitudes of the separate waves;
OWTTE;
i.e. look for an understanding of how the resultant amplitude is produced

Argument should go something like this:
waves from S_{1} and S_{2} travel different distances to different points on $A B$ they will therefore be out of phase at a particular point,
if the phase difference is such that a trough meets a crest then the individual wave amplitudes will add to cancel out-minimum;
if a crest meets crest (trough meets trough) then they will add to a maximum;

B3. (a) let $d=\mathrm{k} v^{2}$;
choose $v=20, d=60$ to give $\mathrm{k}=0.15$; [1]
choose $v=30, d=135$ to give $\mathrm{k}=0.15$;
since k is the same d is proportional to v^{2};
(i.e. they should show that they understand the proportionality and then use two points to verify this proportionality.)
(b) candidates could use a KE - work done argument or kinematic argument
e.g. $\Delta(\mathrm{KE})=\frac{1}{2} m v^{2}=F d$;
where F is the braking force;
if the braking force F is constant then $d \propto v^{2}$;
or
if F is constant than a is constant;
so $v^{2}=u^{2}+2 a d$; [1]
$v=0$ therefore $d \propto u^{2}$;
(c) (i) from the graph $d=60 \mathrm{~m}$;
average speed $=10 \mathrm{~ms}^{-1}$;
$t=\frac{60}{10}=6.0 \mathrm{~s}$;
or
from the graph $d=60 \mathrm{~m}$;
use $v^{2}=u^{2}+2 a d$ to give $a=3.3 \mathrm{~m} \mathrm{~s}^{-2}$;
[1]
use $v=u+a t$ to give $t=6.1 \mathrm{~s}(6.0 \mathrm{~s})$;
(ii) use $v^{2}=u^{2}+2 a d$ to find a;
to give $a=3.3 \mathrm{~m} \mathrm{~s}^{-2}$;
use $F=m a$ to give $F=5000 \mathrm{~N}$;
If they have calculated a in (i) then this is easier for them!
or
use $F d=\frac{1}{2} m v^{2}$;
$=\frac{1}{2}(1500) \times(20)^{2}$;
to give $F=5000 \mathrm{~N}$;
(d) reaction time or thinking time;
explanation of what this is;
(i.e. something like 'when a driver sees an incident that causes him to brake it takes some time before he reacts' receives [2] but just 'reaction time' receives [1])
(e)

rough correct shape;
explanation: reaction time is constant;
therefore each point on the braking distance graph will be increased by an amount proportional to the speed;
OWTTE
(f) greater;
there is now a component of weight acting against the braking force;
(g) time to travel $12 \mathrm{~km}=\frac{12000}{40}=300 \mathrm{~s}$;
therefore rate at which fuel is used $=0.00331 \mathrm{~s}^{-1}$;
(h) energy released per second by the fuel $=35 \times 10^{6} \times 0.0033$

$$
=1.2 \times 10^{5} \mathrm{~W}
$$

25% of this $=3 \times 10^{4}$;
therefore power output $=30 \mathrm{~kW}$;
(i) \quad drag force $=\frac{P}{v}=7.5 \times 10^{2} \mathrm{~N}$

