MARKSCHEME

May 2000

PHYSICS

Standard Level

Paper 2

SECTION A

A1. (a) Work done $=F d=\Delta(\mathrm{KE})=\frac{1}{2} m v^{2}$
to give $F=\frac{m v^{2}}{d}$
(b)

$\nu / \mathrm{m} \mathrm{s}^{-1}$	d / m	$\frac{v^{2}}{d} / \mathrm{ms}^{-2}$
0	0	0
3.0	0.08	$\mathbf{1 1 3}$
10.0	0.35	$\mathbf{2 8 6}$
15.0	0.65	$\mathbf{3 4 6}$
20.0	1.02	$\mathbf{3 9 2}$

$\frac{v^{2}}{d}$ column (All or nothing here!)

Question Al continued

(c)

correctly labelled axes [1]
appropriate scales
data points
line of best fit
(If the point $(0,0)$ is not shown deduct [1].
If a straight line is drawn deduct [1].)
(Do not penalise for plotting v against $\frac{v^{2}}{d}$.)
(d) from the graph $\frac{v^{2}}{d}=330(\pm 20)$
to give $F=2 \times 10^{5} \mathrm{~N}\left(1.9 \rightarrow 2.1 \times 10^{5} \mathrm{~N}\right)$
A2. (a) Downwards on PQ upwards on RS [1]
(b) Initially there is no back emf [1]
As the coil rotates the magnetic flux linking the coil is changing [1]
this will induce an emf in the coil [1]
which is in a direction such as to oppose the current [1]
(Essentially the answer should show evidence of the understanding of induced emf's and the effect they will have on the current in the coil.) [4 max]
A3. (a) (i) Energy supplied $=1.5 \times 10^{3} \times \Delta t=1.5 \times 10^{3} \times 12$ [1]
$=m s \Delta \theta$ [1]
correct substitution to give $120 \mathrm{~J} \mathrm{~kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ [1]
(ii) energy supplied $=m L=1.5 \times 10^{3} \times 180$correct substitution to give $540 \mathrm{~kJ} \mathrm{~kg}^{-1}$[1]
(b)

region of constant temp [1]
melting point, liquefaction point [1](Deduct [1] if appropriate temps not labelled or labelled incorrectly. Slopesneed not be different.)

A4. (a) correct equation ${ }_{3}^{6} \mathrm{Li}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{3} \mathrm{H}+{ }_{2}^{4} \mathrm{He}$
(The He does not have to be correct at this point, just the atomic number and the mass number.)

Helium [1]
(b) 3 half-lives are needed to reduce activity by $\frac{1}{8}$
half life $=12.2$ years
therefore time taken $=3 \times 12.2$

$$
=36.6 \text { years }
$$

SECTION B

B1. (a)

(i) wavelength
(ii) amplitude
(iii) at right angles to the tangent at P and downwards
(b)

P now at the minimum [1]
correct shape of wave [1]
towards the centre of the "circle"

Question B1 continued

(c) (i) correct substitution to give speed $=12.6 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) Use $f=\frac{c}{\lambda}$ [1]
to give $f=0.13 \mathrm{~Hz}$
[1]
[2 max]
(iii) recognition that molecule takes one time period [1]
$T=\frac{1}{f}$
[1]
To give $T=7.7 \mathrm{~s}$
[1]
[3 max]
(d) average speed $\frac{2 \pi r}{t}$ [1]
$r=$ amplitude $=1.0 \mathrm{~m}$ [1]
substitute to give $v=0.82 \mathrm{~m} \mathrm{~s}^{-1}$ [1] [3 max]
(e) energy proportional to v^{2} [1]
v proportional to $A \quad$ [1]
Therefore energy proportional to A^{2} [1] [3 max]
(f) (i) $V I=$ Power [1]
to give $I=1.8 \times 10^{5} \mathrm{~A}$
(ii) V stepped up by a factor of 10^{3} [1]
therefore current stepped down by a factor of 10^{3} [1] to give a 180 A
(iii) power losses depend on $I^{2} R$

So if current goes down by a factor of 10^{3} power losses go down by a factor of 10^{6}.

B2. (a) (i) velocity
correctly labelled axes
correct different slopes
(steeper going down)
t_{1} fuel out
t_{2} maximum height[1]
t_{3} hits the ground [1]
velocity less at t_{l} than at ground
(ii) areas are equal to the distance travelled up and travelled down [1]
the areas are equal
(b) (i) $v=a t$
$=40 \mathrm{~ms}^{-1}$
(ii) height when fuel runs out $=\frac{1}{2} a t^{2}$

$$
=100 \mathrm{~m}
$$

(iii) height reached after fuel runs out given by $v^{2}=2 g s$
$\begin{array}{ll} & =80 \mathrm{~m} \\ \text { [1] }\end{array}$
maximum height $=180 \mathrm{~m}$
(iv) time to reach maximum height from time that fuel runs out
$\frac{40}{10}=4.0 \mathrm{~s}$
total time $=5.0+4.0=9.0 \mathrm{~s}$
[1]
(v) use $s=u t+\frac{1}{2} g t^{2}$
[1]
to give 6.0 s

Question B2 continued

(c)

labelled axes
correct sketch for KE [1]
correct sketch for PE
showing same slopes and $\max \mathrm{PE}=\max \mathrm{KE}$
(d) when fuel runs out $m=0.14 \mathrm{~kg}$
$\mathrm{KE}=\frac{1}{2} m v^{2}=112 \mathrm{~J}$ $\begin{gathered}{[1]} \\ {[2 \mathrm{max}]}\end{gathered}$

B3. (a) (i) When a pd is applied across the ends of a conductor the electrons are accelerated.
They collide with the lattice ions and impart energy to the lattice.
(ii) The current is proportional to the number of electrons crossing a given cross-section in a given time.

If the area of a wire is doubled then for the same pd the number of electrons crossing a cross-section will double.
The current therefore doubles such that $\frac{V}{I}$ is halved.
(Answers will be open-ended but these are the essential points to look for.)
(b)

Correct connection of rheostat to battery [1]

Correct connection of lamp to rheostat
Correct position of ammeter
Correct position of voltmeter
(The essential thing here is that the rheostat is connected as a potential divider. If candidates connect it as a variable resistance then the maximum mark is [2] and zero marks if connected as a variable resistor and the meters are connected incorrectly.)

Question B3 continued

(c) (i) No
(ii) $\frac{12}{0.20}=60 \Omega$

Resistance is the initial slope of the graph [1]
$=\frac{1}{0.04}=25 \Omega \pm 2 \Omega$
(d) power $=V I$

$$
=12 \times 0.2=2.4 \mathrm{~W}
$$

(e) (i) The battery has an internal resistance
of value comparable to the lamp resistance
(Essentially internal resistance must be mentioned and for the [1] and for the other mark some idea of how it will affect the external p.d.)

$$
[2 \max]
$$

(ii) voltage drop across battery $=1.2 \mathrm{~V}$ [1]
therefore pd "across" internal resistance $=1.2 \mathrm{~V}$ [1]
therefore internal resistance $=\frac{1.2}{0.18}=6.7 \Omega$
(f) (i) $\quad V_{\mathrm{US}} I_{\mathrm{US}}=V_{\mathrm{UK}} I_{\mathrm{UK}}$ [1]
to give US: UK = 24:11 (Accept 2:1) [1]
(ii) The ratio this time is in terms of $I^{2} R$ (or $\frac{V^{2}}{R}$) [1]
to give US: UK $=1: 4.8$ (Accept $1: 5$ or $1: 4$ if answer given as $2: 1$ above.)
(iii) $1: 1$

