

MARKSCHEME

May 2000

PHYSICS

Standard Level

Paper 2

SECTION A

A1. (a) Work done =
$$Fd = \Delta(KE) = \frac{1}{2}mv^2$$

to give
$$F = \frac{mv^2}{d}$$
 [1]

[1]

(b)

v/ms^{-1}	<i>d</i> / m	$\frac{v^2}{d}/\mathrm{ms}^{-2}$
0	0	0
3.0	0.08	113
10.0	0.35	286
15.0	0.65	346
20.0	1.02	392

 $\frac{v^2}{d}$ column (All or nothing here!)

[1]

[1 max]

correctly labelled axes	[1]
appropriate scales	[1]
data points	[1]
line of best fit	[1]
(If the point $(0, 0)$ is not shown deduct [1].	
If a straight line is drawn deduct [1].)	[4 max]

(Do not penalise for plotting v against $\frac{v^2}{d}$.)

(d) from the graph
$$\frac{v^2}{d} = 330 \,(\pm 20)$$
 [1]

to give
$$F = 2 \times 10^5$$
 N (1.9 $\rightarrow 2.1 \times 10^5$ N)

[2 max]

[1]

A2. (a) Downwards on PQ upwards on RS [1] [1 max] (b) Initially there is no back emf [1] As the coil rotates the magnetic flux linking the coil is changing [1] this will induce an emf in the coil [1] which is in a direction such as to oppose the current [1] (Essentially the answer should show evidence of the understanding of induced [4 max] emf's and the effect they will have on the current in the coil.) Energy supplied = $1.5 \times 10^3 \times \Delta t = 1.5 \times 10^3 \times 12$ [1] A3. (a) (i) $= ms\Delta\theta$ [1] correct substitution to give 120 $J kg^{-1} °C^{-1}$ [1] [3 max] energy supplied = $mL = 1.5 \times 10^3 \times 180$ (ii) [1] correct substitution to give 540 kJ kg⁻¹ [1] [2 max] (b) temp turns into liquid melts

time

region of constant temp [1] melting point, liquefaction point [1] (Deduct [1] if appropriate temps not labelled or labelled incorrectly. Slopes need not be different.) [2 max]

[1]

A4. (a) correct equation ${}_{3}^{6}\text{Li} + {}_{0}^{1}n \rightarrow {}_{1}^{3}\text{H} + {}_{2}^{4}\text{He}$

(The He does not have to be correct at this point, just the atomic number and the mass number.)

Helium

[1] [2 max]

(b) 3 half-lives are needed to reduce activity by $\frac{1}{8}$ [1]

half life = 12.2 years therefore time taken = 3×12.2 = 36.6 years

[1] [2 max]

SECTION B

B1. (a)

P now at the minimum	[1]
correct shape of wave	[1]
towards the centre of the "circle"	[1]
	[3 max]

- 11 -

Question B1 continued

(c)	(i)	correct substitution to give speed = 12.6 m s^{-1}	[1]
. /	. ,		[1 max]

(ii) Use
$$f = \frac{c}{\lambda}$$
 [1]
to give $f = 0.13$ Hz [1]

to give
$$f = 0.13$$
 Hz [1]
[2 max]

(iii) recognition that molecule takes one time period $T = \frac{1}{f}$ To give T = 7.7 s 13 maxl

(d) average speed
$$\frac{2\pi r}{t}$$
 [1]
 $r = \text{amplitude} = 1.0 \text{ m}$ [1]

substitute to give
$$v = 0.82 \text{ m s}^{-1}$$
 [1]

[3 max]

[2 max]

[1]

[1]

[1]

energy proportional to v^2 (e) [1] v proportional to A [1] Therefore energy proportional to A^2 [1] [3 max]

(f) (i)
$$VI = Power$$
 [1]
to give $I = 1.8 \times 10^5$ A [1]

- V stepped up by a factor of 10^3 (ii) [1] therefore current stepped down by a factor of 10^3 [1] to give a 180 A [1] [3 max]
- (iii) power losses depend on I^2R [1] So if current goes down by a factor of 10^3 power losses go down by a factor of 10^6 . [1] [2 max]

B2.	(a)	(i)	velocity	
			t_1 t_2 time	
			\bigvee_{t_3}	
			correctly labelled axes correct different slopes (steeper going down)	[1] [1]
			t_1 fuel out	[1]
			t_2 maximum height	[1] [1]
			t_3 missible ground velocity less at t, than at ground	[1]
				[6 max]
		(ii)	areas are equal to the distance travelled up and travelled down the areas are equal	[1] [1] [2 max]
	(b)	(i)	v = at	[1]
			$= 40 \text{ m s}^{-1}$	[1] [2 max]
		(ii)	height when fuel runs out $=\frac{1}{2}at^2$ = 100 m	[1] [1] [2 max]
		(iii)	height reached after fuel runs out given by $v^2 = 2gs$ = 80 m	[1] [1]
			maximum height = 180 m	[1] [3 max]
		(iv)	time to reach maximum height from time that fuel runs out	
			$\frac{40}{10} = 4.0$ s	[1]
			total time = $5.0 + 4.0 = 9.0$ s	[1] [2 max]
		(v)	use $s = ut + \frac{1}{2}gt^2$	[1]
			to give 6.0 s	[1] [2 max] continued

Question B2 continued

[1]
[1]
[1]
[1]
[4 max]
[41

(d)	when fuel runs out $m = 0.14$ kg	[1]
	$KE = \frac{1}{2}mv^2 = 112 J$	[1]
	-	[2 max]

B3. (a) (i) When a pd is applied across the ends of a conductor the electrons are accelerated. [1] They collide with the lattice ions and impart energy to the lattice. [1] [2 max]

(ii) The current is proportional to the number of electrons crossing a given cross-section in a given time. [1]

If the area of a wire is doubled then for the same pd the number of electrons crossing a cross-section will double. [1]

The current therefore doubles such that $\frac{V}{I}$ is halved. [1]

(Answers will be open-ended but these are the essential points to look for.) [3 max]

Correct connection of rheostat to battery	[1]
Correct connection of lamp to rheostat	[1]
Correct position of ammeter	[1]
Correct position of voltmeter	[1]

(The essential thing here is that the rheostat is connected as a potential divider. If candidates connect it as a variable resistance then the maximum mark is [2] and zero marks if connected as a variable resistor and the meters are connected incorrectly.) [4]

[4 max]

continued...

Question B3 continued

[1 max]

(ii)
$$\frac{12}{0.20} = 60 \,\Omega$$
 [1]

Resistance is the initial slope of the graph [1]
=
$$\frac{1}{25} \Omega \pm 2 \Omega$$
 [1]

$$0.04 = 23.32 \pm 2.32$$
 [1]
[3 max]

(d) power =
$$VI$$
 [1]
= 12×0.2 = 2.4 W [1]
[2 max]

(ii) voltage drop across battery = 1.2 V [1]
therefore pd "across" internal resistance = 1.2 V [1]
therefore internal resistance =
$$\frac{1.2}{0.18} = 6.7 \Omega$$
 [1]
[3 max]

(f) (i)
$$V_{\rm US}I_{\rm US} = V_{\rm UK}I_{\rm UK}$$
 [1]
to give US: UK = 24:11 (Accept 2:1) [1]

[2 max]

(ii)	The ratio this time is in terms of $I^2 R$ (or $\frac{V^2}{R}$)	[1]
	to give US: UK = 1:4.8 (Accept 1:5 or 1:4 if answer given as 2:1 above.)	[1] [2 max]
(iii)	1:1	[1] [1 max]