

Markscheme

May 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Q	uesti	ion	Answers	Notes	Total
1	а		in order to keep the temperature constant ✓ in order to allow the system to reach thermal equilibrium with the surroundings/OWTTE ✓	Accept answers in terms of pressure or volume changes only if clearly related to reaching thermal equilibrium with the surroundings.	1 max
	b		recognizes b as gradient \checkmark calculates b in range 4.7×10^4 to 5.3×10^4 \checkmark Pam \checkmark	Award [2 max] if POT error in b. Allow any correct SI unit, eg kg s ⁻² .	3
	С		$V \propto H$ thus ideal gas law gives $p \propto \frac{1}{H} \checkmark$ so graph should be «a straight line through origin,» as observed \checkmark		2
	d		$n = \frac{bA}{RT}$ OR correct substitution of one point from the graph \checkmark $n = \frac{5 \times 10^4 \times 1.3 \times 10^{-3}}{8.31 \times 300} = 0.026 \approx 0.03 \checkmark$	Answer must be to 1 or 2 SF. Award [2] for a bald correct answer. Allow ECF from (b).	2

Qı	Question		Answers	Notes	Total
1	е		very large $\frac{1}{H}$ means very small volumes / very high pressures \checkmark		
			at very small volumes the ideal gas does not apply		_
			OR		2
			at very small volumes some of the assumptions of the kinetic theory of gases do not hold \checkmark		

Q	Question		Answers	Notes	Total
2	а		$g = \frac{4\pi^2 \times 1.60}{2.540^2} = 9.7907 \checkmark$	For the first marking point answer must be given to at least 2 dp.	
			$\Delta g = g(\frac{\Delta L}{L} + 2 \times \frac{\Delta T}{T}) = $	Accept calculations based on $g_{\text{max}} = 9.8908$ $g_{\text{min}} = 9.6913$. $\frac{g_{\text{max}} - g_{\text{min}}}{2} = 0.099 \approx 0.1$	3
	b		$\frac{T}{T_0} = 1.01 \checkmark$ $\theta_{\text{max}} = 22 \text{``} \text{``} \text{``}$	Accept answer from interval 20 to 24.	2

Section B

Option A — Relativity

Qı	Question		Answers	Notes	Total
3	а		a set of coordinate axes and clocks used to measure the position «in space/time of an object at a particular time»		
			OR		1
			a coordinate system to measure x,y,z,and t / OWTTE ✓		
	b	i	magnetic only ✓		
			there is a current but no «net» charge «in the wire» ✓		2
	b	ii	electric only ✓		
			P is stationary so experiences no magnetic force ✓		3
			relativistic contraction will increase the density of protons in the wire ✓		

Question		ion	Answers	Notes	Total
4	а		∆t _P / observer sitting in the train ✓		1
	b		$\gamma = \frac{\Delta t_{Q}}{\Delta t_{P}} = \ll \frac{1}{0.30} \approx 3.3 \checkmark$ to give $v = 0.95c \checkmark$		2
	С		γ = 1.25 ✓ «length of train according Q» = 125/1.25 ✓ «giving 100 m»		2
	d	i		Award [1] for one gradient correct and another approximately correct.	1

4	d	ii	lines parallel to the x' axis and passing through B and F ✓ intersections on the ct' axis at B' and F' shown ✓ light at the front of the train must have been turned on first ✓		3
	d	iii	$\Delta t' = 1.25 \times \frac{0.6 \times 100}{3 \times 10^8} $ \(\psi \) \(\psi \) \(2.5 \times 10^{-7} \) s\(\psi \)	Allow ECF for gamma from (c).	1
	d	iv	according to P: $(3 \times 10^8 \times 2.5 \times 10^{-7})^2 - 125^2 = \text{«-» } 10000 \checkmark$ according to Q: $(3 \times 10^8 \times 0)^2 - 100^2 = \text{«-» } 10000 \checkmark$		2
	е		$u' = \frac{-0.7 - 0.6}{1 + 0.7 \times 0.6} \mathbf{c} \checkmark$ = «-» 0.92c \checkmark		2

Qı	uestion	Answers	Notes	Total
5	а	$\gamma = 1.96 \checkmark$ $E_k = (\gamma - 1) \ m_0 c^2 = 900 \text{ «MeV» } \checkmark$ $pd \approx 900 \text{ «MV» } \checkmark$	Award [2 max] if Energy and Potential difference are not clearly distinguished, eg by the unit.	3
	b	energy of proton = γ mc ² = 1838 «Me V» \checkmark total energy available = energy of proton + energy of antiproton = 1838 + 1838 = 3676 «MeV» \checkmark momentum of a one photon = Total energy / 2c = 1838 «Me Vc ⁻¹ » \checkmark		3

6	а	$f = \frac{E}{h} = \frac{14400 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}} = \frac{3.475 \times 10^{18} \text{Hz}}{6.63 \times 10^{-34}} = 3.475 \times 10^{18} \text{Hz}$ $\Delta f = \frac{g \times \Delta h \times f}{c^2} \approx 8550 \text{wHz}$	2
	b	«as the photon moves away from the Earth, » it has to spend energy to overcome the gravitational field \checkmark since $E = hf$, the detected frequency would be lower «than the emitted frequency» \checkmark	2

Option B — Engineering physics

Qı	uesti	ion	Answers Notes	Total
7	а	i	$\frac{M}{3}VR \checkmark$	1
	а	ii	evidence of use of: $L = I\omega = (MR^2 + \frac{M}{3}R^2)\omega$	1
	а		evidence of use of conservation of angular momentum, $\frac{MvR}{3} = \frac{4}{3}MR^2\omega$ \checkmark «rearranging to get $\omega = \frac{v}{4R}$ »	1
	а	iv	initial KE = $\frac{Mv^2}{6}$ \checkmark final KE = $\frac{Mv^2}{24}$ \checkmark energy loss = $\frac{Mv^2}{8}$ \checkmark	3

Qı	Question		Answers	Notes	Total
7	b		$\alpha = \frac{3}{4} \frac{\Gamma}{MR^2} = \frac{3}{4} \frac{0.01}{0.7 \times 0.5^2}$ «to give $\alpha = 0.04286 \text{ rad s}^{-2}$ »	Working OR answer to at least 3 SF must be shown.	1
	b		$\theta = \frac{\omega_i^2}{2\alpha} \text{ «from } \omega_f^2 = \omega_i^2 + 2\alpha\theta \text{»} \checkmark$ $\theta = \frac{v^2}{32R^2\alpha} = \frac{2.1^2}{32 \times 0.5^2 \times 0.043} \text{»} = 12.8 \text{OR } 12.9 \text{ «rad» } \checkmark$ $\text{number of rotations } = \frac{12.9}{2\pi} \text{»} = 2.0 \text{ revolutions } \checkmark$		3

Q	uesti	ion	Answers	Notes	Total
8	а		«a process in which there is» no thermal energy transferred between the system and the surroundings ✓		1
	b		A to B AND C to D ✓		1
	С	i	$T = \frac{PV}{nR} \checkmark$ $T \left(= \frac{512 \times 10^{3} \times 1.20 \times 10^{-3}}{0.150 \times 8.31} \right) \approx 493 \text{ «K» } \checkmark$	The first mark is for rearranging.	2
	С	ii	$P_{B} = \frac{P_{a}V_{A}}{V_{B}} \checkmark$ $P_{B} = 267 \text{ kPa } \checkmark$	The first mark is for rearranging.	2
	d	i	«B to C adiabatic so» $P_B V_B^{\frac{5}{3}} = P_C V_C^{\frac{5}{3}}$ AND $P_C V_C = nRT_C$ «combining to get result» \checkmark	It is essential to see these 2 relations to award the mark.	1
	d	ii	$T_{C} = \left(\frac{P_{B}V_{B}^{\frac{5}{3}}}{nR}\right)V_{C}^{\frac{-2}{3}} \checkmark$ $T_{C} = \left(\frac{267 \times 10^{3} \times (2.30 \times 10^{-3})^{\frac{5}{3}}}{0.150 \times 8.31}\right)(2.90 \times 10^{-3})^{\frac{-2}{3}} = 422 \text{ «K} \checkmark$		2
	е		the isothermal processes would have to be conducted very slowly / OWTTE ✓		1

Q	uesti	ion	Answers	Notes	Total
9	а		ALTERNATIVE 1 pressure in a liquid increases with depth ✓ so pressure at bottom of bubble greater than pressure at top ✓ ALTERNATIVE 2 weight of liquid displaced ✓ greater than weight of bubble ✓		2
	b		$\frac{\text{weight}}{\text{buoyancy}} \left(= \frac{V \rho_a g}{V \rho_i g} = \frac{\rho_a}{\rho_i} = \frac{1.2}{1200} \right) = 10^{-3} $ since the ratio is very small, the weight can be neglected ✓	Award [1 max] if only mass of the bubble is calculated and identified as negligible to mass of liquid displaced.	2
	С		evidence of equating the buoyancy and the viscous force $\langle \rho_t \frac{4}{3} \pi r^3 g = 6 \pi \eta r v_t \rangle$ \checkmark $v_t = \langle \frac{2}{9} \frac{1200 \times 9.81}{1 \times 10^{-3}} \left(0.25 \times 10^{-3} \right)^2 = 0.16 \text{ sm s}^{-1} \rangle$		2

10	а	the loss of energy in an oscillating system ✓		1
	b	$Q = 2\pi \frac{16^2}{16^2 - 10.3^2} \approx 11 \checkmark$	Accept calculation based on any two correct values giving answer from interval 10 to 13.	1
	С	the amplitude decreases at a slower rate ✓ a higher Q factor would mean that less energy is lost per cycle ✓		2

Option C — Imaging

Question	Answers Notes	Total
11 a i	an image formed by extensions of rays, not rays themselves OR an image that cannot be projected on a screen ✓	1
a lii	$\frac{1}{v} = \frac{1}{3.0} - \frac{1}{4.0} \checkmark$ « $v = 12 \text{ cm}$ »	1
a iii	$u=18-12=6.0 \text{ «cm»} \checkmark$ $v=-24 \text{ «cm»} \checkmark$ $\frac{1}{f}=\frac{1}{6.0}-\frac{1}{24} \Rightarrow \text{»} f=8.0 \text{ «cm»} \checkmark$ Award [2 max] for answer of 4.8 cm. Minus sign required for MP2.	3
a iv	line parallel to principal axis from intermediate image meeting eyepiece lens at P ✓ line from arrow of final image to P intersecting principal axis at F ✓ object image in objective final image eye piece	2

Qι	ıesti	on	Answers	Notes	Total
11	b	i	object is far away so intermediate image forms at focal plane of objective ✓ for final image at infinity object must also be at focal point of eyepiece ✓ «hence 87.5 cm»	No mark for simple addition of focal lengths without explanation.	2
	b	ii	angular magnification = $\frac{85.0}{2.50}$ = 34 \checkmark angular diameter $34 \times 7.8 \times 10^{-3} = 0.2652 \approx 0.27$ «rad» \checkmark		2
	С		chromatic aberration is the dependence of refractive index on wavelength ✓ but mirrors rely on reflection OR mirrors do not involve refraction ✓ «so do not suffer chromatic aberration»		2

Qı	Question		Answers Notes	Total
12	а	i	longer distance without amplification ✓ signal cannot easily be interfered with ✓ less noise ✓ no cross talk ✓ higher data transfer rate ✓	2 max
	а	ii	infrared radiation suffers lower attenuation ✓	1
	b		loss = $10 \log \frac{2.4}{15}$ «= -7.959 dB» \checkmark length = $(\frac{7.959}{0.30})$ = $(\frac{3.959}{0.30})$	2
	С		a thin core means that rays follow essentially the same path / OWTTE ✓ and so waveguide (modal) dispersion is minimal / OWTTE ✓	2

Qı	esti	on	Answers	Notes	Total
13	а		bone and tissue absorb different amounts of X-rays OR bone and tissue have different attenuation coefficients ✓ so boundaries and fractures are delineated in an image ✓		2
	b		$ \frac{I_{\text{bone}}}{I_{\text{tissue}}} = \frac{I_0 e^{-\mu_b x}}{I_0 e^{-\mu_t x}} = e^{-(\mu_b - \mu_t) x} \checkmark $ $ \frac{I_{\text{bone}}}{I_{\text{tissue}}} = e^{-1.2 \times 10^{-2} \times (1.9 - 1.1) \times 10^3 \times 5.4 \times 10^{-2}} \checkmark $ $ \frac{I_{\text{bone}}}{I_{\text{tissue}}} = 0.60 \checkmark $		3
	С	i	to split the energy level of protons in the body OR to cause protons in the body to align with the field / precess at Larmor frequency ✓		1
	С	ii	to force/excite protons that are in the spin up/parallel state ✓ into a transition to the spin down/antiparallel state ✓		2
	С	iii	the emitted radio frequency signal has a frequency that depends on the magnetic field ✓ with a gradient field different parts of the body have different frequencies and so can be identified ✓		2

Option D — Astrophysics

Qı	uesti	ion	Answers	Notes	Total
14	а	i	stars fusing hydrogen «into helium» ✓		1
	а	ii	$M = M_{\odot} (4 \times 10^5)^{\frac{1}{3.5}} = 39.86 M_{\odot} \checkmark$ $\ll M \approx 40 M_{\odot}$ »	Accept reverse working.	1
	а	iii	$4 \times 10^5 = 13^2 \times \frac{T^4}{6000^4} \checkmark$ $T \approx 42000 \text{ «K» } \checkmark$	Accept use of substituted values into $L = \sigma 4\pi R^2 T^4$.	2
	а	iv	$4 \times 10^{-11} = 4 \times 10^5 \times \frac{1 \text{AU}^2}{d^2} \checkmark$ $d = 1 \times 10^8 \text{ «AU» } \checkmark$	Accept use of correct values into $b = \frac{L}{4\pi d^2}$.	2
	b		the gravitation «pressure» is balanced by radiation «pressure» ✓ that is created by the production of energy due to fusion in the core / OWTTE ✓	Award [1 max] if pressure and force is inappropriately mixed in the answer. Award [1 max] for unexplained "hydrostatic equilibrium is reached".	2

Question		on	Answers	Notes	Total
14	С		the Sun will evolve to become a red giant whereas Theta 1 Orionis will become a red super giant \checkmark		
			the Sun will explode as a planetary nebula whereas Theta 1 Orionis will explode as a supernova ✓		3
			the Sun will end up as a white dwarf whereas Theta 1 Orionis as a neutron star/black hole ✓		

Qι	uesti	on	Answers	Notes	Total
15	а	i	black body radiation / 3 K ✓ highly isotropic / uniform throughout OR filling the universe ✓	Do not accept: CMB provides evidence for the Big Bang model.	2
	а	ii			1
	b		the universe is expanding and so the wavelength of the CMB in the past was much smaller ✓ indicating a very high temperature at the beginning ✓		2
	С	i		Award [1 max] for POT error.	2
	С	ii	$z = \frac{R}{R_0} - 1 \Rightarrow \frac{R}{R_0} = 1.16 \checkmark$ $\frac{R_0}{R} = 0.86 \checkmark$		2

Qι	ıesti	on	Answers	Notes	Total
16	а		a star will form out of a cloud of gas ✓ when the gravitational potential energy of the cloud exceeds the total random kinetic energy of the particles of the cloud OR the mass exceeds a critical mass for a particular radius and temperature✓		2
	b		number of reactions is $\frac{10^{10} \times 365 \times 24 \times 3600 \times 3.8 \times 10^{26}}{4.3 \times 10^{-12}} = 2.79 \times 10^{55} \checkmark$ H mass used is $2.79 \times 10^{55} \times 4 \times 1.67 \times 10^{-27} = 1.86 \times 10^{29}$ «kg» \checkmark		2
	С		nuclear fusion reactions produce ever heavier elements depending on the mass of the star / temperature of the core ✓ the elements / nuclear reactions arrange themselves in layers, heaviest at the core lightest in the envelope ✓		2

Qι	Question		Answers	Notes	Total
17	а		curve starting earlier, touching at now and going off to infinity ✓		1
	b	i	there is dark matter that does not radiate / cannot be observed ✓	Unexplained mention of "dark matter" is not sufficient for the mark.	1
	b	ii	$\rho_{\Lambda} = 0.68 \rho_{\rm c} = 0.68 \times 10^{-26} \text{ «kgm}^{-3} \text{»} \checkmark$ energy in 1 m³ is therefore $0.68 \times 10^{-26} \times 9 \times 10^{16} \approx 6 \times 10^{-10} \text{ «J»} \checkmark$		2