

Diploma Programme Programme du diplôme Programa del Diploma

Markscheme

May 2017

Physics

Higher level

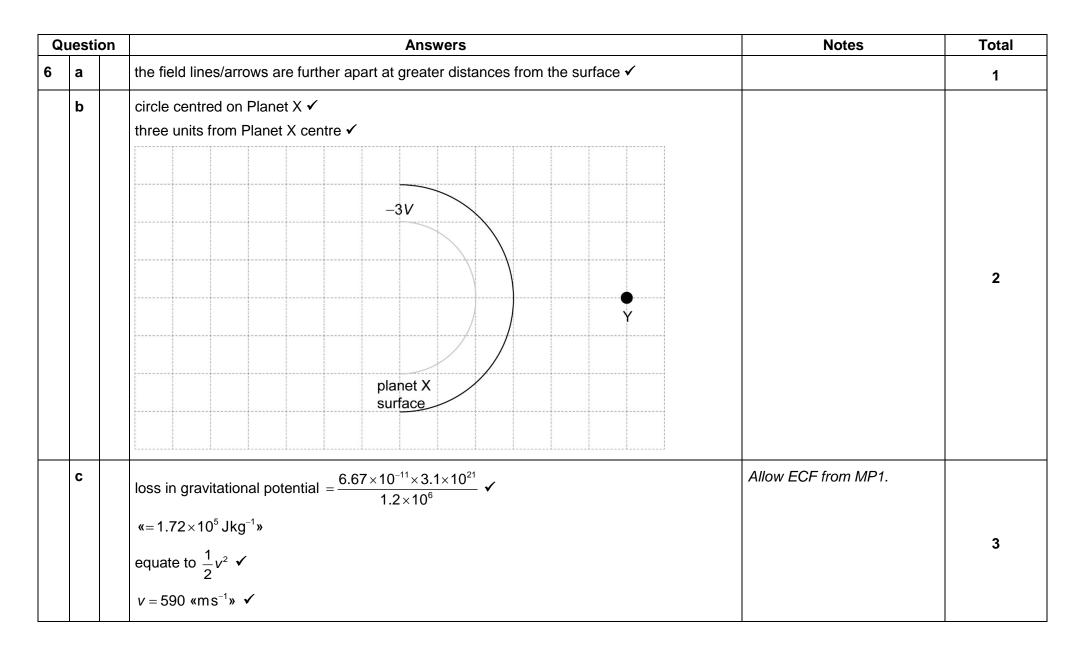
Paper 2

16 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Qı	Question		Answers	Notes	Total	
1	а	i	$\frac{1}{2}v^2 = 0.24 \text{ gh} \checkmark$ $v = 11.9 \text{ sm s}^{-1} \ast \checkmark$	Award GPE lost = $65 \times 9.81 \times 30 = $ «19130 J ». Must see the 11.9 value for MP2, not simply 12.	2	
				Allow $g = 9.8 \text{ ms}^{-2}$.		
	а	ii	internal energy is the total KE «and PE» of the molecules/particles/atoms in an object ✓ temperature is a measure of the average KE of the molecules/particles/atoms ✓	Award [1 max] if there is no mention of molecules/particles/atoms.	2	
	b	i	i	arrow vertically downwards from dot labelled weight/W/mg/gravitational force/Fg/Fgravitational	Do not allow gravity.	
			AND arrow vertically upwards from dot labelled reaction force/R/normal contact force/N/F _N \checkmark W > R \checkmark	Do not award MP1 if additional 'centripetal' force arrow is added.		
				Arrows must connect to dot.		
				Ignore any horizontal arrow labelled friction.	2	
				Judge by eye for MP2. Arrows do not have to be correctly labelled or connect to dot for MP2.		

Q	uesti	ion	Answers	Notes	Total
1	b	ii	ALTERNATIVE 1 recognition that centripetal force is required / $\frac{mv^2}{r}$ seen \checkmark	Do not award a mark for the bald statement that the skier does not lose contact with the ground.	
			= 468 «N» ✓		
			W/640 N (weight) is larger than the centripetal force required, so the skier does not lose contact with the ground \checkmark		
			ALTERNATIVE 2		
			recognition that centripetal acceleration is required / $\frac{v^2}{r}$ seen \checkmark		
			$a = 7.2 \text{ sm s}^{-2} \text{ sm}^{-2}$		
			g is larger than the centripetal acceleration required, so the skier does not lose contact with the ground \checkmark		3
			ALTERNATIVE 3		
			recognition that to lose contact with the ground centripetal force \geq weight \checkmark		
			calculation that $v \ge 14 \text{ sm s}^{-1} \text{ s}^{-1}$		
			comment that 12 «ms ⁻¹ » is less than 14 «ms ⁻¹ » so the skier does not lose contact with the ground \checkmark		
			ALTERNATIVE 4		
			recognition that centripetal force is required / $\frac{mv^2}{r}$ seen \checkmark		
			calculation that reaction force = 172 «N» ✓		
			reaction force > 0 so the skier does not lose contact with the ground \checkmark		


Q	uesti	ion	Answers	Notes	Total
1	C		ALTERNATIVE 1 $0 = 8.2^{2} + 2 \times a \times 24 \text{ therefore } a = \ll 1.40 \ \text{cms}^{-2} \text{ s} \text{ s}$ friction force = $ma = 65 \times 1.4 = 91 \ \text{cms}^{-2} \text{ s} \text{ s}$ coefficient of friction = $\frac{91}{65 \times 9.81} = 0.14 \ \text{s}$ ALTERNATIVE 2 $KE = \frac{1}{2}mv^{2} = 0.5 \times 65 \times 8.2^{2} = 2185 \ \text{sJ} \text{ s} \text{ s}$ friction force = KE/distance = $2185/24 = 91 \ \text{cms}^{-2} \text{ s}$ coefficient of friction = $\frac{91}{65 \times 9.81} = 0.14 \ \text{s}$	Allow ECF from MP1.	3
	d	i	$(*76 \times 9.6) = 730 \checkmark$ Ns <i>OR</i> kg ms ⁻¹ ✓		2
	d	ii	safety net extends stopping time \checkmark $F = \frac{\Delta p}{\Delta t}$ therefore <i>F</i> is smaller «with safety net» OR force is proportional to rate of change of momentum therefore <i>F</i> is smaller «with safety net» \checkmark	Accept reverse argument.	2

Q	Question		Answers	Notes	Total
2	а		when 2 waves meet the resultant displacement ✓ is the «vector» sum of their individual displacements ✓	Displacement should be mentioned at least once in MP 1 or 2.	2
	b		$\lambda = \frac{4.7 \times 10^{-3} \times 0.35 \times 10^{-3}}{2.4} \checkmark$ = 6.9×10 ⁻⁷ «m» ✓ answer to 2 SF ✓	Allow missed powers of 10 for MP1.	3
	с		green wavelength smaller than red ✓ fringe separation / distance between maxima decreases ✓	Allow ECF from MP1.	2
	d		bright central maximum ✓ subsidiary maxima «on either side» ✓ the width of the central fringe is twice / larger than the width of the subsidiary/secondary fringes/maxima	Allow marks from a suitably labelled intensity graph for single slit diffraction.	2 max
			OR intensity of pattern is decreased ✓		

Q	Question		Answers	Notes	Total
3	а		solar heating panel converts solar/radiation/photon/light energy into thermal energy AND photovoltaic cell converts solar/radiation/photon/light energy into electrical energy ✓	Accept internal energy of water.	1
	b		power received = $240 \times 25000 = (6.0 \text{ MW}) \checkmark$ efficiency $(=\frac{1.6}{6.0}) = 0.27 / 27\% \checkmark$		2
	C	i	area = $\pi \times 17^2 \ll 908 \text{ m}^2 \gg \checkmark$ power = $\frac{1}{2} \times 908 \times 1.3 \times 7.5^3 \ll 0.249 \text{ MW} \gg \checkmark$ number of turbines $\ll \frac{1.6}{0.249} = 6.4 \approx 7 \checkmark$	Only allow integer value for MP3. Award [2 max] for 25 turbines (ECF from incorrect power) Award [2 max] for 26 turbines (ECF from incorrect radius)	3
		ii	 «efficiency is less than 100 % as» not all KE of air can be transferred to KE of blades <i>OR</i> air needs to retain KE to escape ✓ thermal energy is lost due to friction in turbine/dynamo/generator ✓ 	Allow velocity of air after turbine is not zero.	2

Q	uesti	ion	Answers	Notes	Total
4	а	i	$I \ll = \frac{8.5 \times 10^3}{240} \gg = 35 \ll A \gg \checkmark$		1
	а	ii	$R = \frac{1.7 \times 10^{-8} \times 10}{6.0 \times 10^{-6}} \checkmark$ = 0.028 «Ω» ✓	Allow missed powers of 10 for MP1.	2
	а	iii	power = $(35^2 \times 0.028) = 34 \text{ W} \text{ V}$	Allow 35 – 36 W if unrounded figures for R or I are used. Allow ECF from (a)(i) and (a)(ii).	1
	b		«as temperature increases» there is greater vibration of the metal atoms/lattice/lattice ions OR increased collisions of electrons ✓ drift velocity decreases «so current decreases» ✓ «as V constant so» <i>R</i> increases ✓	Award [0] for suggestions that the speed of electrons increases so resistance decreases.	3
	С		recognition that power = flow rate $\times C\Delta T \checkmark$ flow rate $\ll = \frac{power}{c\Delta T} \approx = \frac{8.5 \times 10^3}{4200 \times 35} \checkmark$ = 0.058 $\ll kgs^{-1} \gg \checkmark$ $kgs^{-1} / gs^{-1} / Is^{-1} / mls^{-1} / m^3 s^{-1} \checkmark$	Allow MP4 if a bald flow rate unit is stated. Do not allow imperial units.	4

Qı	uesti	ion	Answers	Notes	Total
5	а		Meson: quark-antiquark pair ✓ Baryon: 3 quarks ✓		2
	b	i	 Alternative 1 strange quark changes «flavour» to an up quark ✓ changes in quarks/strangeness happen only by the weak interaction ✓ Alternative 2 Strangeness is not conserved in this decay «because the strange quark changes to an up quark» ✓ Strangeness is not conserved during the weak interaction ✓ 	Do not allow a bald answer of weak interaction.	2
		ii	arrows drawn in the direction shown \checkmark \swarrow $\left(\begin{array}{c} u \\ d \end{array} \right) \pi^{-}$	Both needed for [1] mark.	1
		iii	₩- ✓	Do not allow W or W⁺.	1
	c		 it lowers the cost to individual nations, as the costs are shared ✓ international co-operation leads to international understanding <i>OR</i> historical example of co-operation <i>OR</i> co-operation always allows science to proceed ✓ large quantities of data are produced that are more than one institution/research group can handle ✓ co-operation allows effective analysis\collaboration of able scientists ✓ 	Any one.	1 max

Q	Question		Answers	Notes	Total
6	d		available energy to melt one kg 1.72×10 ⁵ «J» ✓	Allow ECF from MP1.	
			fraction that melts is $\frac{1.72 \times 10^5}{3.3 \times 10^5} = 0.52$ OR 52 % \checkmark	Allow 53% from use of 590 ms ⁻¹ .	2

Question		Answers	Notes	Total
7	а	acceleration/restoring force is proportional to displacement ✓ and in the opposite direction/directed towards equilibrium ✓		2
	b	ALTERNATIVE 1 $\frac{T_1^2}{T_2^2} = \frac{m_1}{m_2} \checkmark$ mass = 0.38 / 0.39 «kg» \checkmark ALTERNATIVE 2 «use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $k = 28$ «Nm ⁻¹ » \checkmark «use of $T = 2\pi \sqrt{\frac{m}{k}}$ » $m = 0.38 / 0.39$ «kg» \checkmark	Allow ECF from MP1.	2
	C	$\omega = \left(\frac{2\pi}{0.74}\right) = 8.5 \left(\operatorname{rads}^{-1}\right) \checkmark$ total energy = $\frac{1}{2} \times 0.39 \times 8.5^2 \times (4.8 \times 10^{-2})^2 \checkmark$ = 0.032 \left{ J} \left{ J} \left{ J}	Allow ECF from (b) and incorrect ω . Allow answer using k from part (b).	3
	d	spring constant/k/stiffness would increase ✓ <i>T</i> would be smaller ✓ fractional uncertainty in <i>T</i> would be greater, so fractional uncertainty of mass of block would be greater ✓		3

Qı	Question		Answers	Notes	Total	
	е	i	left ✓		1	
		ii	coils to the right of P move right and the coils to the left move left ✓ hence P at centre of rarefaction ✓	Do not allow a bald statement of rarefaction or answers that don't include reference to the movement of coils. Allow ECF from MP1 if the movement of the coils imply a compression.	2	

Q	Question		Answers	Notes	Total
8	а		the size of the induced emf \checkmark is proportional/equal to the rate of change of flux linkage \checkmark	The word 'induced' is required here. Allow correctly defined symbols from a correct equation. 'Induced' is required for MP1.	2
	b	i	varying voltage/current in primary coil produces a varying magnetic field ✓ this produces a change in flux linkage / change in magnetic field in the secondary coil ✓ a «varying» emf is induced/produced/generated in the secondary coil ✓ voltage is stepped down as there are more turns on the primary than the secondary ✓	Comparison of number of turns is required for MP4.	4
	b	ii	output voltage = $\frac{90 \times 240}{1800}$ \checkmark = 12 «V» \checkmark		2
	с		laminated core reduces eddy currents ✓ less thermal energy is transferred to the surroundings ✓		2
	d		for a certain power to be transmitted, large V means low $I \checkmark$ less thermal energy loss as $P = I^2 R$ / joule heating \checkmark		2

Q	Question		Answers	Notes	Total
9	а		Observation 1: particle – photon energy is below the work function OR $E = hf$ and energy is too small «to emit electrons» \checkmark wave – the energy of an <i>em</i> wave is independent of frequency \checkmark <i>Observation 2:</i> particle – a single electron absorbs the energy of a single photon «in an almost instantaneous interaction» \checkmark wave – it would take time for the energy to build up to eject the electron \checkmark		4
	b	i	attempt to calculate gradient of graph = $\left(\frac{4.2 \times 10^{-19}}{6.2 \times 10^{14}}\right) \times 10^{-34} \text{ (Js)} \times 10^{-34}$	Do not allow a bald answer of 6.63 x 10 ⁻³⁴ Js or 6.6 x 10 ⁻³⁴ Js.	2
		ii	ALTERNATIVE 1 minimum energy required to remove an electron «from the metal surface» ✓ ALTERNATIVE 2 energy required to remove the least tightly bound electron «from the metal surface» ✓		1
		111	ALTERNATIVE 1 reading of y intercept from graph in range $3.8 - 4.2 \times 10^{-19}$ «J» \checkmark conversion to $eV = 2.4 - 2.6$ « eV » \checkmark ALTERNATIVE 2 reading of x intercept from graph « $5.8 - 6.0 \times 10^{14}$ Hz» and using hf_0 to get $3.8 - 4.2 \times 10^{-19}$ «J» \checkmark conversion to $eV = 2.4 - 2.6$ « eV » \checkmark		2

Question		Answers	Notes	Total
9	с	line parallel to existing line 🗸		2
		to the right of the existing line \checkmark		