MARKSCHEME

May 2006

PHYSICS

Higher Level

Paper 3

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

Option D - Biomedical Physics

D1. stress $=F / A$;
maximum stress $=W / A$;
in new bone $A_{2}=4 A_{1}$;
\Rightarrow new $W_{2}=4 W_{1}$;
Award full marks for correct answer with any sensible reasoning.

D2. (a) $I L$ (sound intensity level) $=10 \lg \left(I / I_{0}\right)$; where $I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$;
(b) intensity at eardrum $=\frac{2.8 \times 10^{-7}}{1.9 \times 10^{-5}}=1.5 \times 10^{-2} \mathrm{~W} \mathrm{~m}^{-2}$;

$$
\begin{align*}
& I L=10 \lg \left(\frac{1.5 \times 10^{-2}}{1.0 \times 10^{-12}}\right) ; \\
&=100 \mathrm{~dB} \tag{3}\\
& \text { Accept } 102 \mathrm{~dB}
\end{align*}
$$

(c) long exposure / loud sound would cause deafness/tinnitus;

D3. (a) (i) $3.0(\pm 0.1) \mathrm{mm}$;
(ii) $\mu=\frac{\ln 2}{\mathrm{t}_{1 / 2}}$;

$$
\begin{equation*}
\mu=\frac{\ln 2}{3.0 \mathrm{~mm}}=0.23 \mathrm{~mm}^{-1} ; \tag{2}
\end{equation*}
$$

Allow ECF from (i) above range gives values from $0.20 \mathrm{~mm}^{-1}$ to $0.28 \mathrm{~mm}^{-1}$.
(b) $\frac{I}{I_{0}}=e^{-\mu x}$;
$\frac{I}{I_{0}}$ greater $\Rightarrow \mu$ smaller;
\Rightarrow half-thickness will be greater (greater intensity for same thickness of bone);
Award [2 max] for correct statements with no explanation.
(c) abdomen has approximately constant μ;
barium meal has high μ value;
barium meal lines stomach;
so outline of stomach becomes clear;

D4. (a) principle of moments mentioned/stated;
weight-pivot distances $>$ tendon-pivot distance;
force in tendon > weight;
(b) system has large velocity ratio;
only small movement of muscle available but large arm movement possible;

D5. (a) type of radiation;
intensity of radiation;
exposure time;
Do not allow "mass".
(b) (named) suitable shielding material absorbs energy before it reaches worker; increasing distance from source reduces intensity of radiation at worker;

Option E - The History and Development of Physics

E1. (a) Copernicus \Rightarrow planets move in circle about the Sun
Kepler \Rightarrow planets move in ellipses about the Sun;
Copernicus \Rightarrow hypothesis
Kepler \Rightarrow based on experimental data;
(b) an inverse square law between the Sun and planets; this force produced the orbital motion of the planets; and accounted for the elliptical orbits; able to derive Kepler's law (of periods) theoretically;

E2. straight-line as a result of force;
curve as a result of weakening of force;
vertical when no force;
vertical (downward) motion is natural motion;

E3. (a) to determine the equivalence between mechanical energy and thermal energy / OWTTE;
(b) weights raised by turning handle;
then allowed to fall so turning the paddle;
mass of weights and height of fall measured;
mass of water measured;
rise in temperature of water measured;
repeat to obtain measurable temperature;

E4. (a) (i) fluorescence glowing; a shadow (of the cross) opposite to cathode/cross;
(ii) the shadow moved; [1]
(b) (presence of) shadow \Rightarrow rays move along straight-line as light does / rays cast a shadow as light does;
shadow moves \Rightarrow a magnet does not influence light;

E5. (a)

arrow between line 4 and line 2;
arrow points downwards;
(b) uses $c=f \lambda$ to determine wavelength; (explicit answer not required)
$R_{\mathrm{H}}=\left\{\left(\frac{1}{2^{2}}\right)-\left(\frac{1}{4^{2}}\right)\right\} \div 2.06 \times 10^{6} ;$
$=1.1 \times 10^{7} \mathrm{~m}^{-1}$;
(c) only hydrogen / singly-ionized helium predicted;
no relative intensities predicted / no transition probabilities predicted; no fine structure;
(d) electron can be described as a wave;
electron position is undefined;
wave nature determines probability of finding particle;
particle can be represented by standing wave;

Option F - Astrophysics

F1. (a) there is an equilibrium;
between radiation pressure and gravitational pressure / OWTTE;
(b) visual binary:
stars (of system) can be separated through a telescope/binoculars / OWTTE;
spectroscopic binary:
(analysis of) light spectrum (from system) reveals two different (classes of) stars;

F2. (a) (class $M \Rightarrow$ low surface temperature \Rightarrow) red;
(b) $\quad d(p c)=\frac{1}{p}=\frac{1}{5.0 \times 10^{-3}}=200 \mathrm{pc}$;
$200 \mathrm{pc} \times 3.26 \times 9.46 \times 10^{15}=6.2 \times 10^{18} \mathrm{~m} ;$
(c) (i) use of $L=b\left(4 \pi d^{2}\right)$;

$$
\begin{align*}
& L=\left(1.6 \times 10^{-8}\right) \times(4 \pi) \times\left(6.2 \times 10^{18}\right)^{2} ; \\
& L=7.6 \times 10^{30} \mathrm{~W} ; \tag{3}
\end{align*}
$$

(ii) $T=\frac{2.9 \times 10^{-3}}{\lambda_{\max }}=\frac{2.9 \times 10^{-3}}{935 \times 10^{-9}}$;

$$
T=3100 \mathrm{~K}
$$

(d) $L=\sigma T^{4}\left(4 \pi R^{2}\right) \Rightarrow R=\frac{(L)^{\frac{1}{2}}}{\left(\sigma T^{4} 4 \pi\right)^{\frac{1}{2}}}$;
$R=\frac{\left(7.6 \times 10^{30}\right)^{\frac{1}{2}}}{\left(5.67 \times 10^{-8} \times(3100)^{4}(4 \pi)\right)^{\frac{1}{2}}} ;$
$\frac{R}{R_{\mathrm{s}}}=\frac{R}{7.0 \times 10^{8}}=500 ;$

F3. (a) the intensity of illumination falls off as $1 / r^{2}$;
(since stars uniformly distributed) the number of stars seen from Earth increases as r^{2}; therefore, the sky should be equally bright in any direction / OWTTE;
Award [1] for "in any direction, the line of sight will encounter the surface of a star \Rightarrow sky as bright as sun".
(b) the BB model leads to the idea of the expansion of the universe;
the BB model leads to the idea that the observable universe is not infinite;
Award [1] for "because the universe (stars) is not infinitely old" (universe far younger than necessary for us to see a star in every direction. Finite speed of light means that we are not receiving light from all sources) / OWTTE.

F4. (a) (i)

line to red giant area;
line to white dwarf area;
(ii) white dwarf; [1]
(b) (i) helium fusion; [1]
(ii) carbon formed; [1]

F5. (a) (relative) recessional speed v between galaxies; at separation distance of d;
(b) conversion of parsec to metres (1 parsec $=3.08 \times 10^{16} \mathrm{~m}$);
$1 / H_{0}=$ age of universe;
$\left(\frac{3.08 \times 10^{16}}{6.5 \times 10^{-2}}\right)=4.7 \times 10^{17} \mathrm{~s}$;

Option G - Relativity

G1. (a) proper time is the time measured in a FR at rest with respect to events;
clock is at rest with respect to muon;
(b) calculated value of gamma, $\gamma=5.0$;

$$
T_{m}=\frac{T_{g}}{\gamma}=\frac{10.2}{5.0}=2.0 \mu \mathrm{~s}
$$

G2. c is constant in all FR / OWTTE; shorter path length to L for Nino; so flash on L seen first by Nino;

G3. (a) transformations made under the assumptions that time measurements (and space measurements) are independent of the observer;
Accept "absolute".
(b) (i) $u_{x}=u^{\prime}{ }_{x}+v=0.9800 c+0.9800 c=1.9600 c$;

Accept -1.9600 c corresponding to - values of v and $u^{\prime}{ }_{x}$.
(ii) $u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}}=\frac{0.9800 c+0.9800 c}{1+\frac{0.9800 c(0.9800 c)}{c^{2}}}$;
$u_{x}=0.9998 c$;
Accept -0.9998 c corresponding to - values of v and $u_{x}{ }_{x}$.
(c) \quad in (b)(i) $v>c$;
since this is not possible, then the Galilean transformation equation is not applicable;

G4. (a) RME: rest mass times c^{2};
TE: sum of RME + kinetic energy (assuming no potential energy); [2]
(b) 938 MeV ;
(c) $\gamma m_{0} c^{2}=m_{0} c^{2}+V e$;
$V e=\gamma m_{0} c^{2}-m_{0} c^{2}$
$V e=m_{0} c^{2}(\gamma-1)$;
$V e=938(4.0)$;
$V=3750 \mathrm{MV}$;

G5. (a) far away from any other mass; constant velocity;
(b) (i) diagram showing large mass and distant light source, light bends round mass; mass warps space-time so that it is curved; shortest path is now curved not straight;
(ii) describes observed effect when mass between observer and source; describes observed effect when mass not present; clear statement that star is the same in both observations;
(c) mass too small; radius too large;

Option H - Optics

H1. (a) oscillating (varying) electric and magnetic fields/electromagnetic waves;
(b) (i) X-rays; [1]
(ii) $10^{14} \mathrm{~Hz} / 10^{15} \mathrm{~Hz}$;

H2. (a) (i)

one ray from fish with correct refraction;
2nd ray from fish with correct refraction;
rays backward to give correct position of image;
Here only a qualitative explanation (diagram) is expected, since no numerical values are given. A quantitative solution is asked for in part (a) (iii).
(ii) virtual since extension of rays gives its position / appear to come from fish / OWTTE;
(iii) $n=\frac{\text { real depth }}{\text { apparent depth }}$;
apparent depth $=\frac{48}{1.3}=37 \mathrm{~cm} ;$

H3.
(a)

H

ray through centre (pole) of lens;
ray parallel to principal axis;
location of image between 6.9 cm and 8.1 cm ;
Accept other suitable ray.
(b) eye to the right of lens;
(c) \quad magnification $=\frac{H}{h}=\frac{3.7}{1.5}$;

$$
=2.5(\pm 0.2) \text {; }
$$

or

$$
\begin{aligned}
& v=7.6 \mathrm{~cm} \\
& u=3.0 \mathrm{~cm} \\
& m=\frac{7.6}{3.0}
\end{aligned}
$$

$$
=2.5(\pm 0.2)
$$

(d) (i) converging (convex) lenses;
(ii) $\frac{1}{3.4}+\frac{1}{v}=\frac{1}{4.0}$;
$v=(-) 22.7 \mathrm{~cm}$;
magnification: $\frac{22.7}{3.4}=6.7$;
total magnification: $6.7 \times 24=160$;
Allow two sig fig for answer (-)25 cm.
\Rightarrow magnification $=7.4$
\Rightarrow total magnification $=180$

H4. identifies correct reflecting surfaces (may be on diagram) e.g. reflection from bottom of lens surface interferes with reflection from top of flat surfaces;
reflection at top of flat surface has $\pi\left(180^{\circ}\right)$ phase change; describes meaning of "in phase" correctly, i.e. simultaneous maxima / OWTTE;
two waves superpose to give greater intensity/maximum \rceil Do not allow repeat of "bright when arriving in phase;
fringe" for this mark.

H5. (a) shape of diffraction pattern acceptable; central maximum of one pattern falls on first minimum of other; relative heights of central and first maxima realistic for both patterns;

(b) $\theta=\frac{1.22 \lambda}{d}=\frac{1.22 \times 400 \times 10^{-9}}{0.003}\left(=1.63 \times 10^{-4} \mathrm{rad}\right)$;
$\left(\right.$ woman - car distance $\left.=\frac{\text { head lamp separation }}{\tan \theta}\right)=\frac{1.2}{1.6 \times 10^{-4}} ;$
$=7.5 \mathrm{~km}$;

