M06/4/PHYSI/HP3/ENG/TZ2/XX/M

) IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

PHYSICS

Higher Level

Paper 3

14 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

[4]

Option D—**Biomedical Physics**

D1. stress =
$$F/A$$
;
maximum stress = W/A ;
in new bone $A_2 = 4A_1$;
 \Rightarrow new $W_2 = 4W_1$;
Award full marks for correct answer with any sensible reasoning. [4]

-4-

D2. (a) *IL* (sound intensity level) = 10 lg
$$(I/I_0)$$
;
where $I_0 = 1.0 \times 10^{-12}$ W m⁻²; [2]

(b) intensity at eardrum =
$$\frac{2.8 \times 10^{-7}}{1.9 \times 10^{-5}} = 1.5 \times 10^{-2} \text{ W m}^{-2}$$
;
 $IL = 10 \log \left(\frac{1.5 \times 10^{-2}}{1.0 \times 10^{-12}} \right)$;
 $= 100 \text{ dB}$;
Accept 102 dB.
[3]

(c) long exposure / loud sound would cause deafness/tinnitus; [1]

D3. (a) (i)
$$3.0(\pm 0.1)$$
 mm; [1]

(ii)
$$\mu = \frac{\ln 2}{t_{\frac{1}{2}}};$$

 $\mu = \frac{\ln 2}{3.0 \,\mathrm{mm}} = 0.23 \,\mathrm{mm}^{-1};$
[2]

Allow ECF from (i) above range gives values from 0.20 mm^{-1} to 0.28 mm^{-1} .

(b)
$$\frac{I}{I_0} = e^{-\mu x}$$
;
 $\frac{I}{I_0}$ greater $\Rightarrow \mu$ smaller;
 \Rightarrow half-thickness will be greater (greater intensity for same thickness of bone);

 $\Rightarrow half-thickness will be greater (greater intensity for same thickness of bone); [3] Award [2 max] for correct statements with no explanation.$

(c) abdomen has approximately constant μ;
 barium meal has high μ value;
 barium meal lines stomach;
 so <u>outline</u> of stomach becomes clear;

D4.	(a)	principle of moments mentioned/stated; weight-pivot distances > tendon-pivot distance; force in tendon > weight;	[3]
	(b)	system has large velocity ratio; only small movement of muscle available but large arm movement possible;	[2]
D5.	(a)	type of radiation; intensity of radiation; exposure time; <i>Do not allow "mass"</i> .	[3]
	(b)	(named) <u>suitable</u> shielding material <u>absorbs energy</u> before it reaches worker; increasing distance from source <u>reduces intensity</u> of radiation at worker;	[2]

Opti	ion E	— Th	e History and Development of Physics		
E1.	(a)	Keple Cope	remnicus \Rightarrow planets move in circle about the Sun er \Rightarrow planets move in ellipses about the Sun; remnicus \Rightarrow hypothesis er \Rightarrow based on experimental data;	[2]	
	(b)	this f and a	verse square law between the Sun and planets; force produced the orbital motion of the planets; accounted for the elliptical orbits; to derive Kepler's law (of periods) theoretically;	[3 max]	
E2.	curv verti	straight-line as a result of force; curve as a result of weakening of force; vertical when no force; vertical (downward) motion is natural motion;			
E3.	(a) (b)	to determine the equivalence between mechanical energy and thermal energy / <i>OW</i> weights raised by turning handle; then allowed to fall so turning the paddle; mass of weights and height of fall measured; mass of water measured; rise in temperature of water measured; repeat to obtain measurable temperature;		[1] [5 max]	
E4.	(a)	-	fluorescence glowing; a shadow (of the cross) opposite to cathode/cross; the shadow moved;	[2] [1]	
	(b)	shade	ence of) shadow \Rightarrow rays move along straight-line as light does / rays cast a bw as light does; bw moves \Rightarrow a magnet does not influence light;	[2]	

[2]

[3]

-7-

arrow points downwards;

- uses $c = f \lambda$ to determine wavelength; *(explicit answer not required)* (b) $R_{\rm H} = \left\{ \left(\frac{1}{2^2} \right) - \left(\frac{1}{4^2} \right) \right\} \div 2.06 \times 10^6;$ $=1.1\times10^7 \text{ m}^{-1};$
- (c) only hydrogen / singly-ionized helium predicted; no relative intensities predicted / no transition probabilities predicted; no fine structure; [2 max]
- (d) electron can be described as a wave; electron position is undefined; wave nature determines probability of finding particle; particle can be represented by standing wave; [3 max]

[1]

Option F — Astrophysics

F1.	(a)	there is an equilibrium; between radiation pressure and gravitational pressure / <i>OWTTE</i> ;	[2]
	(b)	<i>visual binary</i> : stars (of system) can be separated through a telescope/binoculars / <i>OWTTE</i> ;	
		<i>spectroscopic binary</i> : (analysis of) light spectrum (from system) reveals two different (<u>classes</u> of) stars;	[2]

- 8 -

F2. (a) (class M
$$\Rightarrow$$
 low surface temperature \Rightarrow) red;

(b)
$$d(pc) = \frac{1}{p} = \frac{1}{5.0 \times 10^{-3}} = 200 \,\mathrm{pc};$$

 $200 \,\mathrm{pc} \times 3.26 \times 9.46 \times 10^{15} = 6.2 \times 10^{18} \,\mathrm{m};$ [2]

(c) (i) use of
$$L = b(4\pi d^2)$$
;
 $L = (1.6 \times 10^{-8}) \times (4\pi) \times (6.2 \times 10^{18})^2$;
 $L = 7.6 \times 10^{30}$ W;
[3]

(ii)
$$T = \frac{2.9 \times 10^{-3}}{\lambda_{\text{max}}} = \frac{2.9 \times 10^{-3}}{935 \times 10^{-9}};$$

 $T = 3100 \text{ K};$
[2]

(d)
$$L = \sigma T^{4} (4\pi R^{2}) \implies R = \frac{(L)^{\frac{1}{2}}}{(\sigma T^{4} 4\pi)^{\frac{1}{2}}};$$

 $R = \frac{(7.6 \times 10^{30})^{\frac{1}{2}}}{(5.67 \times 10^{-8} \times (3100)^{4} (4\pi))^{\frac{1}{2}}};$
 $\frac{R}{R_{s}} = \frac{R}{7.0 \times 10^{8}} = 500;$
[3]

- **F3.** (a) the intensity of illumination falls of $f as 1/r^2$; (since stars uniformly distributed) the number of stars seen from Earth increases as r^2 ; therefore, the sky should be equally bright in any direction / *OWTTE*; [3] *Award* [1] for "in any direction, the line of sight will encounter the surface of a *star* \Rightarrow *sky as bright as sun*".
 - (b) the BB model leads to the idea of the expansion of the universe;
 the BB model leads to the idea that the observable universe is not infinite; [2 max]
 Award [1] for "because the universe (stars) is not infinitely old" (universe far younger than necessary for us to see a star in every direction. Finite speed of light means that we are not receiving light from all sources) / OWTTE.

F5. (a) (relative) recessional speed v between galaxies; at separation distance of d; [2]

(b) conversion of parsec to metres (1 parsec = 3.08×10^{16} m); 1/H₀ = age of universe;

$$\left(\frac{3.08 \times 10^{16}}{6.5 \times 10^{-2}}\right) = 4.7 \times 10^{17} \,\mathrm{s}\,;$$
[3]

Option G — Relativity

- G1. (a) proper time is the time measured in a FR at rest with respect to events; clock is at rest with respect to muon; [2]
 - (b) calculated value of gamma, $\gamma = 5.0$;

$$T_m = \frac{T_g}{\gamma} = \frac{10.2}{5.0} = 2.0 \,\mu \mathrm{s} \,;$$
^[2]

G2. *c* is constant in all FR / *OWTTE*; shorter path length to L for Nino; so flash on L seen first by Nino;

[3]

- G3. (a) transformations made under the assumptions that time measurements (and space measurements) are independent of the observer; [1] Accept "absolute".
 - (b) (i) $u_x = u'_x + v = 0.9800c + 0.9800c = 1.9600c$; [1] Accept -1.9600c corresponding to - values of v and u'_x .

(ii)
$$u_x = \frac{u'_x + v}{1 + \frac{u'_x v}{c^2}} = \frac{0.9800c + 0.9800c}{1 + \frac{0.9800c (0.9800c)}{c^2}};$$

 $u_x = 0.9998c;$
Accept - 0.9998c corresponding to - values of v and $u'_x.$
[2]

- (c) in (b)(i) v > c; since this is not possible, then the Galilean transformation equation is not applicable; [2]
- **G4.** (a) *RME*: rest mass times c^2 ; *TE*: sum of RME + kinetic energy (assuming no potential energy); [2]
 - (b) 938 MeV; [1]

(c)
$$\gamma m_0 c^2 = m_0 c^2 + Ve;$$

 $Ve = \gamma m_0 c^2 - m_0 c^2$
 $Ve = m_0 c^2 (\gamma - 1);$
 $Ve = 938(4.0);$
 $V = 3750 \text{ MV};$
[4]

G5.	(a)	far away from any other mass; constant velocity;		
	(b)	(i)	diagram showing large mass and distant light source, light bends round mass; mass warps space-time so that it is curved; shortest path is now curved not straight;	[3]
		(ii)	describes observed effect when mass between observer and source; describes observed effect when mass not present; clear statement that star is the same in both observations;	[3]
	(c)) mass too small; radius too large;		[2]

Option H — **Optics**

H1.	(a)	oscillating (varying) electric and magnetic fields/electromagnetic waves;		[1]
	(b)	(i)	X-rays;	[1]
		(ii)	10^{14} Hz / 10^{15} Hz;	[1]

- 12 -

H2. (a) (i)

one ray from fish with correct refraction;
2nd ray from fish with correct refraction;
rays backward to give correct position of image;
Here only a qualitative explanation (diagram) is expected, since no numerical
values are given. A quantitative solution is asked for in part (a)(iii).[3]

(ii) virtual <u>since</u> extension of rays gives its position / appear to come from fish / OWTTE; [1]

;

(iii)
$$n = \frac{\text{real depth}}{\text{apparent depth}};$$

apparent depth = $\frac{48}{1.3} = 37 \text{ cm}$

[2]

M06/4/PHYSI/HP3/ENG/TZ2/XX/M

- H4. identifies correct reflecting surfaces (may be on diagram) *e.g.* reflection from bottom of lens surface interferes with reflection from top of flat surfaces;
 reflection at top of flat surface has π (180°) phase change;
 describes meaning of "in phase" correctly, *i.e.* simultaneous maxima / OWTTE;
 two waves superpose to give greater intensity/maximum Do not allow repeat of "bright when arriving in phase;
 [4]
- H5. (a) shape of diffraction pattern acceptable; central maximum of one pattern falls on first minimum of other; relative heights of central and first maxima realistic for both patterns; [3]

(b) $\theta = \frac{1.22\lambda}{d} = \frac{1.22 \times 400 \times 10^{-9}}{0.003} (= 1.63 \times 10^{-4} \text{ rad});$ $\left(\text{woman} - \text{car distance} = \frac{\text{head lamp separation}}{\tan \theta} \right) = \frac{1.2}{1.6 \times 10^{-4}};$ = 7.5 km; [3]