M06/4/PHYSI/HP3/ENG/TZ1/XX/M+

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MARKSCHEME

May 2006

PHYSICS

Higher Level

Paper 3

15 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

-2-

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of IBCA.

Option D — **Biomedical Physics**

D1.	(a)	area scales as $dimension^2 Or L^2$; volume scales as $dimension^3 Or L^3$;	[2]
	(b)	<pre>surface area of cylinder > surface area of sphere (for same mass); rate of energy absorption greater for cylinder; hence {temperature rises more rapidly} for the same mass;</pre>	[3]
D2.	(a)	<i>conductive</i> : loss occurs in middle ear / damage to membranes / ossicles; <i>sensory</i> : loss occurs in inner ear / damage within cochlea / auditory nerve;	[2]
	(b)	(i) (changes in) loudness are response of ear to (changes in) sound intensity; response is (approximately) logarithmic with intensity;	[2]
		 (ii) loss of hearing is selective; so it is sensory; Do not award mark if fallacious or no argument. 	[2]
		(iii) $60 = 10 \lg \left(\frac{I}{(1.0 \times 10^{-12})} \right);$ $I = 1.0 \times 10^{-6} \text{ W m}^{-2};$	[2]
D3.	(a)	<i>e.g.</i> simple scattering; photoelectric effect; compton scattering; pair production; <i>Allow</i> [1] each for any two mechanisms.	[2 max]
	(b)	(i) thickness of material required to reduce intensity / photon flux by one half;	[1]
		(ii) ratio = 0.5^8 ; = $\frac{1}{256}$ or 3.9×10^{-3} ;	[2]
	(c)	ultrasound (nearly all) reflected by bone (boundary) but X-rays can penetrate; X-rays show up internal structures;	[2]

- D4. muscle contracts by (relatively) small amount; for there to be a much larger movement of bone / load; force in muscle must be much larger than load; (and) mechanical advantage is load ÷ effort;
- **D5.** radiation causes direct [*OWTTE*] damage to DNA; damages cells (indirectly) via ionization of water; short-term effects include death of cell / failure to replicate; short-term effects include production of toxins / failure of immune system; long-term effects include mutations / cancers; caused by faulty repair / changes to DNA;

[6]

[4]

-7-

Option E — The History and Development of Physics

E1.	(a)	(precise) positions and times/movements for the (known) planets;	[1]
	(b)	planetary orbits are <u>elliptical</u> rather than circular; with Sun at one focus;	[2]
	(c)	Newton developed (universal) law of gravitation; law was used to derive Kepler's laws;	[2]
E2.	(a)	wire carrying a current; causes deflection of a compass needle / suspended magnet;	[2]
	(b)	used two (parallel) current-carrying conductors; (mutual) forces when current in wires;	[2]
E3.	(a)	phlogiston / caloric is a fluid; this flows between bodies when they are at different temperatures;	[2]
	(b)	<i>e.g.</i> thermal energy produced as a result of friction / cannot explain change of phase; further detail regarding stated phenomenon <i>e.g.</i> fluid endless / does not cause temp change;	[2]
E4.	(a)	wax blocks placed in neutron beam; protons ejected from wax blocks; emergent radiation examined in cloud chamber;	[3]
	(b)	energy / speed of protons measured; in a cloud chamber / by absorption in aluminium; momentum of protons measured; by collision with nitrogen atoms;	[4]

[1]

[1]

E5. (a) <u>permittivity of free space;</u>

- (b) (i) angular momentum is quantized **or** is $\frac{nh}{2\pi}$; each quantum is $\frac{h}{2\pi}$ (where *h* is the Planck constant) **or** *n* is an integer; [2]
 - (ii) angular momentum = mvr; <u>so</u>, $mvr = \frac{nh}{2\pi}$; squaring and substituting for v^2 made clear; gives $r = \frac{\varepsilon_0 h^2 n^2}{\pi m e^2}$ [3]

(c) using
$$n = 1$$

$$r = \frac{8.85 \times 10^{-12} \times (6.63 \times 10^{-34})^2}{\pi \times 9.1 \times 10^{-31} \times (1.6 \times 10^{-19})^2};$$

$$= 5.3 \times 10^{-11} \text{ m};$$
this is about the experimentally measured diameter of an atom / *OWTTE*; [3]

(d) *e.g.* electrons shield nucleus; *Any other sensible suggestion.*

Option F — Astrophysics

F1.	(a)	constellation: Pattern of stars; Candidate must indicate that stars are not close together.			
		stellar cluster: group of stars bound by gravitation / in same region of space;			
	(b)	$d = \frac{1}{0.0077};$ = 130 pc no atmospheric turbulence / irregular refraction;			
	(c)				
	(d)	(i) red/red-orange; (not orange) blue / blue-white / white;			
		(ii) Betelgeuse looks brighter;	[1]		
		(iii) $L = 4\pi b d^2$; Rearrangement of formula on data sheet required. $d = 4.0 \times 10^{18}$ m; $L = 4\pi \times 2.0 \times 10^{-7} \times (4.0 \times 10^{18})^2$; $L = 4.0 \times 10^{31}$ W;			
		(iv) $L = 4\pi bd^2$ luminosity of Rigel is about half that of Betelgeuse (or ecf from (iii)); brightness of Rigel is about 0.1 times that of Betelgeuse; so Rigel is more distant (must be a consistent conclusion from statements about luminosity and brightness); Do not allow mark for fallacious or no argument. Mere statement that luminosity and brightness are less so Rigel is more distant scores [1 mark] only.	[3]		
F2.	(a)	universe is infinite;	[1]		
	(b)	number of stars in shell increases as R^2 ;			
		intensity decreases as $\frac{1}{R^2}$;			
		brightness of shell is constant; adding all shells to infinity; sky would be as bright as Sun / uniformly bright; Award [2 max] for argument based on any line of sight lands on a star.	[5]		

F3. high temperatures / high K.E of nuclei; so that nuclei/atoms come close to each other; high density/pressure; so that chance of collision is high;

[4]

F4. *e.g.* very distant / moving away at speeds near *c* / (comparatively) young / large Doppler shift; some are radio sources; very high luminosity; centred in galaxies; *[2 max] Do not allow "small"*.

F5. (a)
$$v = H_0 d$$
 or $H d$;

(b) $d = \frac{5 \times 10^8}{3.1 \times 10^{22}} = 1.6 \times 10^{-14} \text{ Mpc or } 0.04 \text{ m yr}^{-1} = 1.27 \times 10^{-12} \text{ km s}^{-1};$ $v = 60 \times 1.6 \times 10^{-14} = 9.6 \times 10^{-13} \text{ km s}^{-1} = 0.03 \text{ metres per year so no or } d = 6.6 \times 10^8 \text{ m};$ *Any sensible comment. e.g.* this is inconsistent with stated value. *e.g.* value of H_0 not known with certainty or it is consistent because values known

to 1 sf only;

[3]

[1]

[2]

Option G — Relativity

G1. (a)		mea	means of locating an object in space;		
	(b)	(i)	<i>observer O</i> : light from flashes arrives simultaneously at O; because takes same time, as measured by O, to reach O / because O is at rest with respect to A and B;		
			<i>observer C</i> : flash from A reaches C before flash from B; because speed of light independent of reference frame;	[4]	
		(ii)	$\gamma = \frac{9.0}{7.2} = 1.25$;		
			$\left(1-\frac{v^2}{2}\right)^{-0.5}=1.25;$		

- 12 -

$$\begin{pmatrix} 1 - \frac{v}{c^2} \end{pmatrix} = 1.25;$$

$$v = 0.6c;$$

$$Award [0] if use of \gamma = 0.8.$$

$$[3]$$

G2. (a) (i)
$$1.8c$$
; [1]

(ii) recognize use of
$$u'_x = \frac{(u_x - v)}{\left(1 - \frac{u_x v}{c^2}\right)};$$

Allow equation with + in numerator and denominator.

$$u'_{x} = \frac{(c+0.8c)}{\left(1 - \left\{\frac{-0.8c^{2}}{c^{2}}\right\}\right)};$$

$$u'_{x} = c;$$
[3] Award **[1 max]** if substitution gives – sign in numerator or denominator

Award [1 max] if substitution gives – sign in numerator or denominator. Award [2 max] for a statement "c is same in all frames so $u'_x = c$ ".

- (b) (according to Maxwell), speed of light independent of speed of source / depends on permittivity and permeability which are constants; this is shown by answer in (a)(ii);
- **G3.** (a) rest mass energy: $E = m_0 c^2$ where m_0 is the rest mass;

	total energy:	sum of rest mass energy and kinetic energy;	[2]
(b)	energy = 2×0.5	$1 = 1.02 \mathrm{MeV};$	
	estimate becaus	e only rest-mass energy considered / k.e. not considered;	[2]
(c)	curved line thro	ugh origin always "above" given line after about $0.4c$	

(c) curved line through origin always "above" given line after about 0.4c; asymptotic at v = c; [2] **G4.** (a) frame of reference <u>far from all masses</u> having acceleration *a*; is equivalent to frame of reference (at rest) in gravitational field of strength *a*;

0r

-	impossible to distinguish between accelerating reference frame; and a gravitational field;				
(i)	ray from star A to observer deviated when near Sun;				

- (b) (i) ray from star A to observer deviated when near Sun; straight-line from star B to observer; Do not award credit where curvature shown at distances greater than two Solar diameters from the Sun.
 - (ii) observation made when no Sun and when Sun is eclipsed; star A moves relative to background stars; [2]
- **G5.** (a) if object is dense/massive enough it will cause <u>severe</u> warping of space-time; such that light entering the space-time surrounding the object cannot escape; [2] Do not accept "light cannot escape".

(b) use of
$$R_{\rm SCH} = \frac{2GM}{c^2}$$

= $\frac{2 \times 6.67 \times 10^{-11} \times 2 \times 10^{31}}{(3 \times 10^8)^2}$;
= 3×10^4 m;

[2]

Option H — **Optics**

H1.	(a)	(i)	correct position by eye but within $\pm 5 \text{ mm}$;	[1]
		(ii)	ray parallel to principal axis through F_2 ; ray undeviated through pole of lens; correct extrapolation to marked image; Do not allow unless image lies between L_1 and right-hand F_1 .	[3]
	(b)	virtu	al because rays only appear to come from it;	[1]
	(c)	(con	(compound) microscope;	
	(d)	(i) L_1 unchanged; L_2 moved (to right) so that I_1 is at F_2 ;		[2]
		(ii)	angle (subtended) at eye by image is larger than that (subtended) by object;	[1]
Н2.	(a)	light must be incident on boundary from the more (optically) dense medium; angle of incidence must be greater than the critical angle;		[2]
	(b)	(i)	$i = 22^\circ$; sin $r = 1.5 \times \sin 22$	
			$r = 34^{\circ};$	[2]
		(ii)	ray at correct angle (by eye);	[1]
	(c)		 e.g. refractive index between core and covering constant; so that refraction in fibre independent of medium in which fibre is placed; e.g. core of fibre would not become scratched; (so that) light would not be scattered out of fibre; Award [1] for a sensible reason and [1] for the explanation. e.g. monochromatic; so that all light has same speed in fibre; 	
		(so t		
	(d)	0		
			can be switched very rapidly; at more information can be carried;	
		so th Awa	light can be directed; hat less light losses / less need for amplification; rd [1] each for two sensible reasons and [1] for each explanation. not allow coherence without explanation.	[4 max]

Н3.	(a)	wider slit gives narrower single-slit diffraction pattern; <u>so</u> fewer fringes observed;	[2]
	(b)	greater amplitude/intensity from both slits; <u>bright</u> fringes are brighter; <u>dark</u> fringes are unchanged;	[3]
H4.	(a)	π / same phase change on reflection at upper and at lower surfaces; for destructive, path difference must be $\frac{1}{2}\lambda$;	
		$d=\frac{\lambda}{4};$	[3]
	(b)	destructive interference for one colour/wavelength/green only; other colours / red and blue still reflected giving colouring / purple colour;	[2]