MARKSCHEME

May 2006

PHYSICS

Higher Level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of IBCA.

SECTION A

A1. (a)

correct line of best fit;
The line should go through a majority of the points.
(b) $\quad \lg (F)$ against $\lg (x)$;
$\lg (F)=\lg (k)+n \lg (x) ;$
slope/gradient $=n$;
Award [2 max] for a plot of $\lg (F / k)=n \lg x$.
(c) from the graph breaking load $=8.5(\pm 0.1) \times 10^{-2} \mathrm{~N}$;
breaking stress $=\frac{8.5 \times 10^{-2}}{3.14 \times(4.5)^{2} \times 10^{-12}}=1.3 \times 10^{9} \mathrm{~Pa}$ or $\mathrm{N} \mathrm{m}^{-2}$;
some statement of conclusion;
(d) $\%$ uncertainty in $r=\frac{0.1}{4.5} \times 100=2 \%$;
uncertainty in $r^{2}=0.04 / 4 \%$;
(e) (i) work = area under graph;
between $\left(2.4 \times 10^{-2}, 1.6 \times 10^{-2}\right)$ and $\left(5.6 \times 10^{-2}, 8.5 \times 10^{-2}\right)$;
$=(1.6 \times 3.2) \times 10^{-4}+\frac{1}{2}(3.2 \times 6.9) \times 10^{-4}$;
$=1.6 \times 10^{-3} \mathrm{~J}$
If incorrect line of best fit in (a), allow first marking point only.
or
work $=$ average force \times distance/displacement/extension;
average force $=5.1 \times 10^{-2} \mathrm{~N}$;
extension $=3.2 \times 10^{-2} \mathrm{~m}$;
to give $1.6 \times 10^{-3} \mathrm{~J}$
(ii) KE of insect $=$ work needed to break web $=1.6 \times 10^{-3} \mathrm{~J}$;

$$
\begin{aligned}
v & =\sqrt{\frac{2 \mathrm{KE}}{m}} ; \\
& =\sqrt{\frac{3.2 \times 10^{-3}}{1.5 \times 10^{-4}}}=4.6 \mathrm{~ms}^{-1}
\end{aligned}
$$

No ECF from (e)(i) i.e. the value $1.6 \times 10^{-3} \mathrm{~J}$ must be used.

A2. (a) the work done per unit mass;
in bringing a small/point mass;
from infinity to the point (in the gravitational field);
(b) $\quad V_{0}=-G \frac{M}{R_{0}}$;
$G M=g_{0} R_{0}{ }^{2}$ to give $V_{0}=-g_{0} R_{0} ;$
Do not award mark for data book expression $V=-G \frac{m}{r}$.
(c) from the graph $V_{0}=3.9(\pm 0.2) \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1}$;
$g_{0}=\frac{V_{0}}{R_{0}}=\frac{39}{5}$;
$=7.8(\pm 0.4) \mathrm{Nkg}^{-1}$;
Ignore any sign (+ or -)
(d) $2.0 \times 10^{7} \mathrm{~m}$ above surface is $2.5 \times 10^{7} \mathrm{~m}$ from centre;
ΔV between surface and $2.5 \times 10^{7} \mathrm{~m}=(3.9-1.0) \times 10^{7}=2.9(\pm 0.2) \times 10^{7} \mathrm{~J} \mathrm{~kg}^{-1} ;$
$v=\sqrt{\frac{2 m \Delta V}{m}}=\sqrt{2 \Delta V}$;
$=\sqrt{6.2 \times 10^{7}}=7.6(\pm 0.3) \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$;
Award [3 max] if the candidate forgets that the distances are from the centre (answer $4.5 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$), i.e. the candidate must show ΔV.

A3. (a) (i) $P \propto \frac{1}{V}$ or $V \propto \frac{1}{P}$ or $p V=$ constant or pressure inversely proportional to volume etc.; [1]
(ii) $\quad V \propto T$ etc.;
(b) (i) $\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T^{\prime}}$ or $P_{1} T^{\prime}=P_{2} T_{1}$;
(ii) $\frac{V_{1}}{T^{\prime}}=\frac{V_{2}}{T_{2}}$ or $V_{1} T_{2}=V_{2} T^{\prime}$;
(c) from (i) $T^{\prime}=\frac{P_{2} T_{1}}{P_{1}}$;
from (ii) $T^{\prime}=\frac{V_{1} T_{2}}{V_{2}}$;
equate to get $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$;
so that $\frac{P V}{T}=$ constant or $P V=K T$;

SECTION B

B1. (a) the rate of working / work \div time;
If equation is given, then symbols must be defined.
(b) $\quad P=\frac{W}{t}=\frac{F \times d}{t}$;
$v=\frac{d}{t}$ therefore, $P=F v$;
(c) (i) $t=\frac{d}{v}$;
$=\frac{4800}{16}=300 \mathrm{~s}$;
(ii) $W=m g h=1.2 \times 10^{4} \times 300=3.6 \times 10^{6} \mathrm{~J}$;
(iii) work done against friction $=4.8 \times 10^{3} \times 5.0 \times 10^{2}$;
total work done $=2.4 \times 10^{6}+3.6 \times 10^{6}$;
total work done $=P \times t=6.0 \times 10^{6}$;
to give $P=\frac{6 \times 10^{6}}{300}=20 \mathrm{~kW}$;
(d) (i) $\sin \theta=\frac{0.30}{6.4}=0.047$;
weight down the plane $=W \sin \theta=1.2 \times 10^{4} \times 0.047=5.6 \times 10^{2} \mathrm{~N}$;
net force on car $F=5.6 \times 10^{2}-5.0 \times 10^{2}=60 \mathrm{~N}$;
$a=\frac{F}{m}$;
$\frac{60}{1.2 \times 10^{3}}=5.0 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2} ;$
(ii) $v^{2}=2 a s=2 \times 5 \times 10^{-2} \times 6.4 \times 10^{3}$;
to give $v=25 / 26 \mathrm{~m} \mathrm{~s}^{-1}$;
Give full credit for (i) and (ii) to candidates who use energy argument to calculate v and then use this to calculate a.
gain in k.e. $=$ loss in p.e. - work done against friction;
$\frac{1}{2} m v^{2}=m g h-F d ;$
$\frac{1}{2} m v^{2}=3.6 \times 10^{6}-5.0 \times 10^{2} \times 6.40$;
$0.6 \times 10^{-3} v^{2}=3.6 \times 10^{6}-5.0 \times 10^{2} \times 6.40$;
$v=25 / 26 \mathrm{~m} \mathrm{~s}^{-1}$;
$a=\frac{v^{2}}{2 s}$;
$=5.0 / 5.1 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}$;
(e) $5.6 \times 10^{2} \mathrm{~N}$;
(f) (i) a compression or expansion / change in state (of the gas); in which no (thermal) energy is exchanged between the gas and the surroundings / in which the work done is equal to the change in internal energy of the gas;
(ii) isobaric;
(g) (i) $\quad Q_{\mathrm{H}}$ absorbed $\mathrm{B} \rightarrow \mathrm{C}$;
Q_{C} ejected $\mathrm{D} \rightarrow \mathrm{A}$;
(ii) $Q_{\mathrm{H}}-Q_{\mathrm{C}}$;
(iii) a Carnot engine has the greatest efficiency of all engines / OWTTE; so for the same operating temperatures, more work per cycle will be done; therefore, greater since the area equals the work done;
(h) (for real engine) $\frac{20}{P_{\mathrm{H}}}=0.32$ to give $P_{\mathrm{H}}=63 \mathrm{~kW}$;
time for one cycle $=0.02 \mathrm{~s}$;
$Q_{\mathrm{H}}=P_{\mathrm{H}} \times$ time to give $Q_{\mathrm{H}}=6.3 \times 10^{4} \times 0.02 ;$
$=1.3 \mathrm{~kJ}$
or
eff $=\frac{W}{Q_{\mathrm{H}}}$;
$W=\frac{2 \times 10^{4}}{50}=400 \mathrm{~J}$;
$0.32=\frac{400}{Q_{\mathrm{H}}}$ to give $Q_{\mathrm{H}}=1.3 \mathrm{~kJ}$;

B2. (a) no energy is propagated along a standing wave / OWTTE;
the amplitude of a standing wave varies along the wave / standing wave has nodes and antinodes;
in standing wave particles are either in phase or in antiphase / OWTTE;
(b) medium 1 ;
wavelength is greater than in medium 2 ;
and $c=f \lambda$ and frequency is same in both media;
Award [1] if the candidate answers medium 2, because wavelength is greater. Award [1] for correct medium and mention of bending towards normal when entering medium 2. Award [0] for correct medium but incorrect or no explanation.
(c) measurement of wavelength:
$\lambda_{1}=2.5 \mathrm{~cm}$;
$\lambda_{2}=1.0 \mathrm{~cm}$;
$\frac{c_{1}}{c_{2}}=\frac{\lambda_{1}}{\lambda_{2}}=2.5(\pm 0.2) ;$
or
measurement of incident and refraction angles:
$\theta_{1}=60^{\circ}$;
$\theta_{2}=20^{\circ}$;
$\frac{c_{1}}{c_{2}}=\frac{\sin \theta_{1}}{\sin \theta_{2}}=2.5$;
Award [2] if the candidate gets it the wrong way round in either method, but they must have answered medium 2 in (b).
(d) Look for these main points.
when the tube is vibrated, a wave travels along the tube and is reflected at B;
the wave is inverted on reflection;
the reflected wave interferes with the forward wave;
the maximum displacements occurs midway between A and B ;
since there is always a node at A and B , then the pattern shown will be produced / OWTTE;
Award [1] for essentially two waves in opposite directions, [1] for π out of phase,
[1] for interference and [2] for condition to produce shape.
(e) (i) $f=\frac{v}{\lambda}$;
to get $f=$ constant \sqrt{T} since λ constant;
therefore, a plot of f^{2} against T or f against \sqrt{T};
should produce a straight-line through the origin / OWTTE;
(ii) $\lambda=4.8 \mathrm{~m}$;
$v=f \lambda=1.8 \times 4.8=8.6 \mathrm{~m} \mathrm{~s}^{-1} ;$
$k=\frac{v}{\sqrt{T}}=\frac{8.6}{3}=2.9 ;$
Ignore any units.
(f)
(i)

smaller wavelength and larger wavelengths in appropriate position relative to S ; quality of diagram e.g. position of S and consistency of wavelength;
(ii) B hears higher frequency than A / A hears lower frequency than B ; since λ smaller for $\mathrm{B} /$ since λ larger for A ;
(g) (i) when two (sound) waves of nearly the same frequency interfere;
the intensity of the resulting wave varies with a frequency which is called the beat frequency / OWTTE;
(ii) recognize to use $f^{\prime}=f\left(\frac{1}{1-\frac{v}{c}}\right)$ or $f^{\prime}=f\left(1+\frac{v}{c}\right)$ because $\underline{v \ll c}$;
combine with $f_{\text {beat }}=f^{\prime}-f=f\left(\frac{1}{1-\frac{v}{c}}-1\right)$;
substitute to get $f_{\text {beat }}=636 \mathrm{~Hz}$;
but incident wave is also Doppler shifted so $f_{\text {beat }}=1270 \mathrm{~Hz}$;

B3. (a) (i) correct labelling of A and V;
(ii) P on resistor at "bottom";
(b) (i) $I=0.40 \mathrm{~A}$;
$R=\frac{V}{I}=\frac{10}{0.40}=25 \Omega ;$
(ii) the rate of increase of I decreases with increasing $V /$ OWTTE;
because: the conductor is (probably) heating up as the current increases / OWTTE; and resistance (of a conductor) increases with increasing temperature;
(c) (i) from graph, current in $\mathrm{Y}=0.30 \mathrm{~A}$;
current in $\mathrm{X}=0.20 \mathrm{~A}$ to give total current $=0.50 \mathrm{~A}$;
(ii) potential across $\mathrm{Z}=7.0 \mathrm{~V}$;
therefore, $R=\frac{7.0}{0.50}=14 \Omega$;
(iii) resistance of parallel combination $\frac{14}{7} \times 5$ or $\frac{5.0}{0.50}$; $=10 \Omega ;$
or
resistance of $\mathrm{Y}=\frac{5.0}{0.30}=17 \Omega$ and resistance of X is 25Ω;
so combination $=\frac{25 \times 17}{42}=10 \Omega$;
(d) (i) upwards
the direction of the compass needle is the resultant of two fields / OWTTE;
the field must be into the plane of the (exam) paper to produce a resultant field in the direction shown / OWTTE;
Award [1] for "upwards because of the right hand rule" / OWTTE.
(ii)

or

vector addition with correct values of two angles shown $30^{\circ}, 60^{\circ}$ or 90°;
from diagrams $B_{\mathrm{E}}=B_{\mathrm{W}} \times \tan 60$ or $B_{\mathrm{E}}=\frac{B_{\mathrm{W}}}{\tan 30}$;
(iii) $B_{\mathrm{w}}=\frac{\mu_{0} I}{2 \pi r}=\frac{2 \times 10^{-7} \times 4}{2 \times 10^{-2}}=4.0 \times 10^{-5} \mathrm{~T}$;
$B_{\mathrm{E}}=B_{\mathrm{w}} \times \tan 60=6.9 \times 10^{-5} \mathrm{~T} ;$
(e) (i) the e.m.f. induced in a circuit/coil/loop is equal to/proportional to;
the rate of change of flux linking the circuit/coil/loop;
Do not allow "induced current".
(ii) the induced e.m.f. / current is in such a direction that its effect is to oppose the change to which it is due / OWTTE;
(f) (i) description:
on closing the switch, the reading of the voltmeter will increase to a maximum value;
then drop back to zero;
explanation:
on closing the switch, a magnetic field is established in the solenoid so a flux links the loops;
the field is changing with time / the current is changing with time so an e.m.f. is induced in the loops;
when the current reaches a maximum there is no longer a time changing flux so there is no induced e.m.f.;
(ii) description:
on opening the switch, the reading on the voltmeter will increase to a maximum value but in the opposite direction;
and then drop to zero;
explanation:
when the switch is opened the field drops to zero - so again a time changing flux which will induce an e.m.f. in the opposite direction as the e.m.f. will now be such as to oppose the field falling to zero/Lenz's law;
when the current reaches zero, there will no longer be a flux change;

B4. (a) mass of LHS $=235.0439+1.0087=236.0526 u$;
mass ofRHS $=95.9342+137.9112+2 \times 1.0087=235.8628 u$;
LHS - RHS $=0.1898 u$;
$=0.1898 \times 932=176.9 \mathrm{MeV}$;
(b) if the net external force acting on a system is zero / for an isolated system of interacting particles;
the momentum of the system is constant / momentum before collision equals momentum after collision;
Award [1] for momentum before collision equals momentum after collision.
(c) $2.00 \mathrm{MeV}=3.20 \times 10^{-13} \mathrm{~J}$;
$v=\sqrt{\frac{2 E}{m}}=\sqrt{\frac{6.40 \times 10^{13}}{1.68 \times 10^{-27}}} ;$ $=1.95 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
(d) (i) momentum of neutron before $=1.95 \times 10^{7} \mathrm{~m}$;
momentum of neutron after $=-1.65 \times 10^{7} \mathrm{~m}$;
therefore, $1.95 \times 10^{7} \mathrm{~m}=-1.65 \times 10^{7} \mathrm{~m}+12 \mathrm{mv}$;
to give $v=0.30 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
If the candidates go straight to the third marking point do not penalize them.
(ii) $\quad \mathrm{KE}_{\text {before }}=\frac{1}{2}(1.95)^{2} m=1.90 m$ or $3.19 \times 10^{-13} \mathrm{~J}$;
$\mathrm{KE}_{\text {after }}=\frac{1}{2}(1.65)^{2} m+6(0.3)^{2} m=1.90 m$ or $3.19 \times 10^{-13} \mathrm{~J}$;
collision is elastic since $K E_{\text {before }}=K E_{\text {after }}$;
Accept argument based on approach velocity $=$ separation velocity .
(iii) loss in $\mathrm{KE}=6(0.3)^{2} m=0.54 \mathrm{~m}$ or $9.07 \times 10^{-14} \mathrm{~J}$;
fractional loss $=\frac{0.54}{1.90}$ or $\frac{0.91 \times 10^{-13}}{3.19 \times 10^{-13}}=0.285 \approx 0.3(30 \%) ;$
(iv) each collision reduces energy by $\frac{1}{3}$ so after first collision $\frac{2}{3}$ of energy left so second collision reduces energy by $\frac{1}{3}$ of $\frac{2}{3}$ of initial energy, leaving $\frac{4}{9}$;
so to reduce the energy from 2 MeV to 0.1 eV therefore, takes quite a lot of collisions / OWTTE;
Look for an understanding of the idea that each collision reduces the remaining energy by $\frac{1}{3}$ so a lot of collisions needed to get down to 0.1 eV .
(e) $2.00 \mathrm{MeV}=2.00 \times 1.6 \times 10^{-13} \mathrm{~J}$

$$
\begin{aligned}
p & =\sqrt{2 m_{0} E} ; \\
& =\sqrt{2 \times 1.68 \times 10^{-27} \times 3.2 \times 10^{-13}}=3.28 \times 10^{-18} \mathrm{~N} \mathrm{~s} ; \\
\lambda & =\frac{h}{p}=\frac{6.6 \times 10^{-34}}{3.28 \times 10^{-20}} ; \\
& =2.01 \times 10^{-14} \mathrm{~m} ;
\end{aligned}
$$

or

$$
\begin{aligned}
p & =m v=1.68 \times 10^{-27} \times 1.95 \times 10^{7} ; \\
& =3.28 \times 10^{-20} \mathrm{Ns} ; \\
\lambda & =\frac{h}{p}=\frac{6.6 \times 10^{-34}}{3.28 \times 10^{-20}} ; \\
& =2.01 \times 10^{-14} \mathrm{~m} ;
\end{aligned}
$$

(f) (i) ${ }_{55}^{138} \mathrm{Cs} \rightarrow{ }_{56}^{138} \mathrm{Ba}+\beta^{-}+\bar{v}$
${ }_{56}^{138} \mathrm{Ba}$;
v;
(ii) (electro)weak force;

W/(charged) vector / exchange boson;
Accept W^{+}, W^{-}or Z^{0}.
(g) (i) time to fall from 100% to $50 \%=35(\pm 3)$ minutes;
(ii) at $250 / 300$ seconds very little caesium is left; so very little new barium is being formed; so half-life is time to fall from 20% to 10% or 18% to $9 \%=90(\pm 5)$ minutes;

