MARKSCHEME

May 2002

PHYSICS

Higher Level

Paper 3

Subject Details:

Physics HL Paper 3 Markscheme

General

A markscheme often has more specific points worthy of a mark than the total allows. This is intentional. Do not award more than the maximum marks allowed for part of a question.

When deciding upon alternative answers by candidates to those given in the markscheme, consider the following points:

- Each marking point has a separate line and the end is signified by means of a semicolon (;).
- An alternative answer or wording is indicated in the markscheme by a ' $/$ '; either wording can be accepted.
- Words in (...) in the markscheme are not necessary to gain the mark.
- The order of points does not have to be as written (unless stated otherwise).
- If the candidate's answer has the same 'meaning' or can be clearly interpreted as being the same as that in the mark scheme then award the mark.
- Mark positively. Give candidates credit for what they have achieved, and for what they have got correct, rather than penalising them for what they have not achieved or what they have got wrong.
- Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- Occasionally, a part of a question may require a calculation whose answer is required for subsequent parts. If an error is made in the first part then it should be penalised. However, if the incorrect answer is used correctly in subsequent parts then follow through marks should be awarded. Indicate this with 'ECF', error carried forward.
- Units should always be given where appropriate. Omission of units should only be penalised once. Indicate this by ' $\mathbf{U - 1}$ ' at the first point it occurs. Ignore this, if marks for units are already specified in the markscheme.
- Deduct 1 mark in the paper for gross sig dig error i.e. for an error of $\mathbf{2}$ or more digits.
e.g. if the answer is 1.63:

2	reject
1.6	accept
1.63	accept
1.631	accept
1.6314	reject

Indicate the mark deduction by 'SD-1'. However if a question specifically deals with uncertainties and significant digits, and marks for sig digs are already specified in the markscheme, then do not deduct again.

OPTION D - BIOMEDICAL PHYSICS

D1. (a) (i) viscosity
[1 max]
(ii) $Q: \frac{m^{3}}{s}$ or $m^{3} s^{-1}$;
$\eta: \mathrm{Nm}^{-2} \mathrm{~s}$ - also accept Pa s;
derived from the definition: $\frac{\left(\mathrm{Nm}^{-2}\right)}{\left(\mathrm{ms}^{-1} / \mathrm{m}\right)}$
or Poiseuille 's equation: $\left(\mathrm{Nm}^{-2}\right) m^{4} m^{-1}\left(\frac{m^{3}}{s}\right)^{-1}$
If derived from Poiseuille's equation, there is a possibility of $E C F$ from $m^{3} s^{-1}$.
(b) (i) for constant $Q, \Delta P \propto r^{-4}$;

$$
\begin{align*}
& \frac{r_{B}}{r_{A}}=\frac{1}{2} \tag{1}\\
& \frac{\Delta P_{B}}{\Delta P_{A}}=\left(\frac{1}{2}\right)^{-4}=16 \times \tag{1}
\end{align*}
$$

the pressure drop across tube B must be $16 \times$ that across tube A.
(ii) $\Delta P \propto$ resistance, so $R_{B}=16 R_{A}$;
(iii) this is a parallel combination: $\frac{1}{R_{\text {comb }}}=\sum \frac{1}{R_{i}}$;

$$
\begin{equation*}
\Rightarrow \quad R_{\text {comb }}=\frac{R}{4} ; \tag{1}
\end{equation*}
$$

(c) (i) Award [2 max] for three or four correct labels, [1] for two correct labels and [0] if only one label is correct.

Label $1=$ aorta \quad Label $2=$ arteries or arterioles
Label $3=$ capillaries \quad Label $4=$ veins or venules
The answers to (ii) and (iii) below rest on the "conservation of matter" and the incompressibility of blood.
(ii) the same blood flow rate Q;
must be carried by a greater cross sectional area of vessels, hence blood velocity must be reduced;
(iii) heart output $=\operatorname{Area} \times v_{\text {average }}$;
$\Rightarrow v_{\text {average }}=\frac{100\left(\mathrm{~cm}^{3} \mathrm{~s}^{-1}\right)}{8.0 \mathrm{~cm}^{2}}=12 \mathrm{~cm} \mathrm{~s}^{-1}=10 \mathrm{~cm} \mathrm{~s}^{-1}$ (1 significant digit);

D2. (a) mass of water $\propto L^{2}$;
normal body mass $\propto L^{3}$;
\Rightarrow ratio $=\frac{\text { mass of water }}{\text { normal body mass }} \propto \frac{L^{2}}{L^{3}}=\frac{1}{L}$
(b) $\frac{\text { ratio human }}{\text { ratio fly }} \approx \frac{L_{f l y}}{L_{\text {human }}}$;

This assumes the "proportionality constants" are equal which, given the totally different nature of the animals, is stretching things a bit! If any candidate makes an explicit (sensible) reference to this aspect they should be rewarded, with up to [1] subject to the [3 max].
$L_{f l y} \approx 10 \mathrm{~mm}$ (accept $\sim 5-20 \mathrm{~mm}$);
$L_{\text {human }} \approx 1700 \mathrm{~mm}$ (accept $\sim 1500-2000 \mathrm{~mm}$);
\Rightarrow ratio fly \approx ratio human $\times \frac{L_{\text {human }}}{L_{f l y}}=\frac{1 \% \times 1700}{10}=170 \%($ accept $\sim 75-400 \%)$;
(accept a maximum of 2 significant digits)

D3. (a) sound at frequencies $\geq 20 \mathrm{kHz}$
(b) Essential points:
pulses of ultrasound are emitted / sent out;
the reflected pulses are detected and timed;
this gives the distance to the boundary and so it can be mapped;
Additional information for which [1] can be awarded:
the pulses reflect off "boundaries" within the body where the refractive index changes the reflections are weak
there is strong absorption
(c) high frequency \rightarrow small wavelength; [1]
\rightarrow better resolution;
(d) to eliminate any air layer between the transducer head and the body / skin; [1]
(makes a better acoustic match)\Rightarrow better transmission into the body (less reflection);[1]
(e) Award [2 max] for any two of the following.
when "looking" at - soft tissue and/or fluid;

- organs, etc. that may be more susceptible to damage;
- embryos / foetuses;[1]
when looking at a "real-time" image; [1]

OPTION E - HISTORICAL PHYSICS

E1. (a) (i) all planetary paths must be shown as (or somehow indicated to be) circles

(ii) Sun and Stars' motion is apparent; [1]
due to the spin of the Earth in the "opposite" sense; [1]
(b) (i) Award [1 max] for any one of the following.
phases of Venus;
varying brightness of planets; [1]
"rough" features on the Sun and Moon (hence they are not "perfect spheres"); [1]
Sun rotates;
(ii) in a geocentric model, the Earth is at the centre of "all heavenly motion";
why an explanation of the stated observation fails in such a model;
The first two observations above are "inexplicable" / have no natural explanation and the last three are philosophically not acceptable in such a model.
(c) orbits were ellipses not circles; [1]
with the Sun at one focus;
 "off centre"

A good diagram can be a full description.
(d) (i) an empirical relationship is a rule or set of rules that allow certain events / observations to be predicted but with no underlying physical principle. or an empirical relationship provides a "numerical" agreement or guess a formula which fits the facts

E2. (a) (i) 19th century (accept 1800s, etc.) [1 max]
(ii) the (separate) condenser was not part of the Newcomen engine.
(iii) the temperatures of the "hot" and "cold" reservoirs;

$$
[1+1]
$$

[2 max]
(b) (i) "high quality" - heat into boiler / high temperature steam Accept coal or fuel.
"low quality" - low temperature steam / heat out at condenser / atmosphere Clearly, once one source has been identified the other follows.

> [1 max]
(ii) degraded (thermal) energy is: at a "lower temperature" or of "lower quality" or "less ordered" / more "spread out" (over a large number of molecules);

To receive the second mark, these have to be qualified along the lines of: "harder" to extract useful work from or "harder" to transform into work or becomes "less available" to do useful work;

Accept answers that are specific to the situation for the second mark.
e.g. degraded energy is the thermal energy of the air, warmed via the condenser / steam engine. It is no longer available to do work / etc.,
(c) Award any sensible statement along the lines of:
entropy change is a measure of energy degradation / is directly related to $Q_{\text {CoLD }}$, the amount of degraded energy;
Award any additional qualification:
in irreversible processes the amount of degraded energy is always >0, just as the entropy change >0;
entropy is high when energy is "disordered" / spread over many molecules;
the greater the degradation of the energy, the greater the entropy change;
the greater amount of degraded energy the greater the entropy change;

E3. The existence of a cut-off frequency and the "time delay" are linked. The wave model does not predict a cut-off frequency because one just has to increase the intensity or wait for a longer time and eventually the metal surface will absorb enough energy to emit an electron. the photon-electron interaction is a one-to-one, "billiard-ball" type "collision";
this means that, (if the conditions are such that the photoelectric effect takes place at all), there can never be a "time delay", (even at the lowest intensities);
there is a minimum amount of energy required to knock out the electron (the work function) - either the photon has enough energy or it has not;
for the photon, $E=h f$, hence a minimum $E \Rightarrow$ a minimum f;
Award additional marks for other, nontrivial, relevant information up to [4 max]

E4. (i) mass-energy not conserved; mass-energy LHS < mass-energy RHS;
$\mathrm{n} \rightarrow \mathrm{p}^{+}+\mathrm{e}^{-}+\bar{v} ;$
Must be an anti-neutrino to balance the lepton number.
(ii) Baryon number not conserved;
minimal change from given (incorrect) decay mode $\Rightarrow \Lambda^{0} \rightarrow \mathrm{p}^{+}+\pi^{-}$;
Also accept $\Lambda^{0} \rightarrow \mathrm{n}+\pi^{0}$ (another major decay mode), for even though the properties of the π^{0} are not explicitly given, they can be inferred.
Do not accept $\Lambda^{0} \rightarrow \mathrm{n}$ as this cannot conserve energy and momentum - hard but fair.

Also accept the decays $\Lambda^{0} \rightarrow \mathrm{n}+\mathrm{e}^{-}+\mathrm{e}^{+}$(with or without neutrinos), $\Lambda^{0} \rightarrow \mathrm{p}^{+}+\mathrm{e}^{-}+\bar{v}$ or $\Lambda^{0} \rightarrow \mathrm{p}^{-}+\mathrm{e}^{-}+v$ even though these do not occur, they are consistent with the data in the table. However, $\Lambda^{0} \rightarrow \mathrm{n}+\pi^{-}+\pi^{+}$does not conserve mass-energy
(iii) momentum not conserved;

OPTION F - ASTROPHYSICS

F1. (a) (i) Deneb would be bluish and Antares A reddish;
because Deneb is at a higher (surface) temperature;
at higher temperatures a greater proportion of the energy is radiated in the blue part of the visible spectrum;
Accept any sensible reference to temperature.
(ii) Antares A is brighter than Deneb (accept - about the same brightness);
because it has a smaller apparent magnitude;
(iii) Deneb is further away than Antares A;

Deneb's absolute magnitude is smaller \Rightarrow Deneb's luminosity $>$ Antares A, but it looks fainter;
Do not accept "because the parallax angle is too small to measure" for the second mark.
(b) $\mathrm{d}=\frac{1}{0.006} \mathrm{pc}$;

$$
=3.26 \times 9.46 \times 10^{15} \times \frac{1}{0.006}=5.1 \times 10^{18}, \text { accept } 5 \times 10^{18} \mathrm{~m}(1 \text { significant digit }) ;
$$

(c) $\mathrm{L}=\sigma \mathrm{AT}^{4}$ and $\mathrm{A}=\pi r^{2}$;
$\frac{\mathrm{L}_{\mathrm{A}}}{\mathrm{L}_{\mathrm{B}}}=40$ (forming the ratio);

F2. (a) expect a "plan view" circles or ellipses;

To the Earth
or an "inclined view"

To the Earth

Mizar A2

H3. (a) $d \sin \theta=n \lambda$ (for maxima);
$\Rightarrow d \sin \theta=1 \times \lambda$ for $\theta=0.50^{\circ}$ (the scale can easily be read to 2 significant figures);
$\Rightarrow d=\frac{434 \times 10^{-9}}{\sin 0.50}=5.0 \times 10^{-5} \mathrm{~m}(=0.050 \mathrm{~mm})$;
(b) Award [1] per feature shown on the diagram below, up to [3 max]. narrower "lines";
maxima in the same positions;
greater intensity (clearly, correct scaling is not required);
secondary, much smaller, maxima (there should be two but this is not critical);
It is not necessary to show all maxima as long as the candidate clearly shows he/she knows what's up e.g. see below

H4. (a) figure should show parallel incident rays; and position of focus inside the eyeball;

(b) diverging
[1 max]
(c) the image of a distant object (at ∞) is at $d_{i}=-0.70 \mathrm{~m}$ (it's on the object side) hence
$\frac{1}{\mathrm{f}}=\frac{1}{\infty}-\frac{1}{0.70}$;
$\Rightarrow \mathrm{f}=-0.70 \mathrm{~m}$ (confirming it is a diverging lens);
Use of $d_{i}=+0.70 \mathrm{~m}$ receives [1]
(d) (i) $\mathrm{n} \equiv \frac{\mathrm{c}}{\mathrm{c}_{\text {medium }}}=\frac{\mathrm{f} \lambda}{\mathrm{f} \lambda \lambda_{\text {medium }}}$;

$$
\Rightarrow \lambda_{\text {medium }}=\frac{550}{1.337}=411 \mathrm{~nm}(3 \text { significant digits) }
$$

(ii) Rayleigh criterion $\Rightarrow \theta_{\mathrm{R}}=\frac{1.22 \lambda}{\mathrm{D}}$;

$$
\begin{aligned}
& =\frac{1.22 \times 411 \times 10^{-9}}{4 \times 10^{-3}} \\
& =1.25 \times 10^{-4} \mathrm{rad}=1.3 \times 10^{-4} \mathrm{rad}(2 \text { significant digits })
\end{aligned}
$$

$$
[1]
$$

Use of $550 \mathrm{~nm} \Rightarrow 1.6(7) \times 10^{-4} \mathrm{rad}$, receives [2 max].

