

MARKSCHEME

November 2001

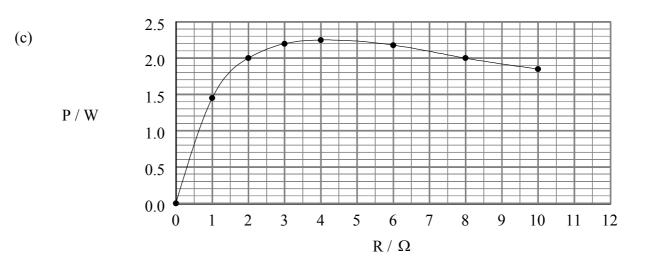
PHYSICS

Higher Level

Paper 2

[1]

[1]


[1]

[1] [3 max]

[1] [2 max]

SECTION A

- A1. (a) recognise to use $P = I^2 R$; correct substitution to give P = 1.8 W;
 - (b) error in $I^2 = 4\%$; error in $I^2R = 14\%$; therefore absolute uncertainty = ± 0.3 W;

labelled axes with correct units;	[1]
suitable scale (should fill at least half the grid);	[1]
data points (zero point must be included);	[1]
best fit line;	[1]
	[4 max]

(d) $4 \Omega (\pm 1\Omega)$

(e)	yes;		[1]
	because of the large error in determining the actual maximum of the graph;		[1]
	OWTTE;	(2	,

[2 max]

[1 max]

A2. (a) (i) use
$$v = \sqrt{2gh}$$
 to get 4.0 m s⁻¹ [1 max]

(ii) use
$$v = \sqrt{2gh}$$
 to get 3.5 m s⁻¹ [1 max]

- (iii) $\Delta p = m\Delta v = 0.2 \times 7.5;$ [1] = 1.5 N s; (Award [1] for 0.1 N s and use e.c.f. in (b) below.) [2 max]
- (b) (i) the total change in momentum (accept impulse) [1 max]

(ii) total momentum =
$$\frac{1}{2}$$
50× Δt = 1.5 N s; [1]

to give
$$\Delta t = 0.06$$
 s; [1]
e.c.f. from above gives $\Delta t = 0.004$ s;

A3. (a) combine
$$F = mg_0 = G \frac{Mm}{R_p^2}$$
; [1]

$$GM = g_0 R_p^{2}; [1]$$

substitute in
$$V = -G\frac{M}{R}$$
 to get $V = -\frac{g_0 R_p^2}{R}$; [1]

[3 max]

(b) (i) from the graph when
$$R = 2.5 \times 10^6$$
 m, $V = -9.8(\pm 0.2) \times 10^6$ J kg⁻¹; [1]
substitute into $g_0 = \frac{V}{R_p}$ to give $g_0 = 3.9 \,\mathrm{m \, s^{-2}}(\pm 0.3 \,\mathrm{m \, s^{-2}})$; [1]

(ii) distance from the centre = 5.5×10^6 m and ; V at 5.5×10^6 m = 4.2×10^6 J kg⁻¹ [1] change in potential = $(9.8 - 4.4) \times 10^6$ J kg⁻¹ = $5.4(\pm 0.4) \times 10^6$ J kg⁻¹; [1] gain in PE of satellite = $3000 \times 5.6 \times 10^6$ J kg⁻¹; [1] = 1.7×10^{10} J; If then use 3.0×10^6 m from the centre the ensure is 5.4×10^9 J.

If they use 3.0×10^6 m from the centre the answer is 5.4×10^9 J. (Award [2] out of [3] for this answer.)

[3 max]

A4. (a)
$${}^{14}_{7}N + {}^{1}_{0}n = {}^{14}_{6}C + {}^{1}_{1}H$$
 [1 max]

(ii) use
$$A = A_0 e^{-\lambda t}$$
; [1]

$$\lambda = \frac{0.7}{5600};$$
 [1]

$$t = \frac{5600}{0.7} \log_e \frac{13.2}{15.5};$$
[1]

to give
$$t = 1300$$
 years; [1]

Alternatively,

use
$$A = A_0 e^{-\lambda t}$$
 [1]
 $A = -\frac{155}{2}$

$$\frac{A_0}{A} = e^{\lambda t} = \frac{13.5}{13.2} = 1.17;$$
 [1]

$$\lambda t = 0.16, \, \lambda t_{\frac{1}{2}} = \ln 2 = 0.69 \,;$$
^[1]

$$t = \frac{0.16}{0.19} \times 5600 = 1300 \text{ years};$$
[1]

Whichever method, essentially award [1] for the right equation, [2] for a reasonable attempt at the arithmetic, and [1] for the correct answer.

If they try and attempt to answer by estimating the fraction of half-lives $\frac{2.3}{7.75} \times 5600 = 1700$ years then award a maximum of [2] - [1] for the idea and [1] for the 'correct' arithmetic.

[4 max]

(c) the coal is 'older' than several half-lifes;
so activity is too weak to detect;
OWTTE;[1]

SECTION B

B1. Part 1

to give $d\theta = 0.6$ °C;

(a)	(i)	400 g	[1 max]
	(ii)	$Q = mL = 0.4 \times 2.3 \times 10^6$ (<i>i.e.</i> formula and correct substitution)	[1]

 $=9.2 \times 10^5 \text{ J}$; [1] [2 max]

(iii) rate =
$$\frac{\text{chergy}}{\text{time}}$$
; [1]
= $\frac{9.2 \times 10^5}{900}$; [1]

[2 max]

(iv) because of all the energy losses to the surroundings [1 max] OWTTE;

(b) use
$$\frac{dQ}{dt} = -kA\frac{d\theta}{dx}$$
; [1]

correct substitution
$$1000 = \frac{200 \times 5 \times 10^{-2} \times d\theta}{6 \times 10^{-3}}$$
; [1]

(c) Any sensible discussion of appropriate physics *e.g.* [2] only a small amount of the base is actually in contact with the burner; so there will be a layer of air between the burner and the base that accounts for most of the temperature drop (*or air is a poor conductor*) aluminum is a good conductor flame has to be a higher temperature than base for energy transfer to take place;

(d)	energy supplied to water $=1000 \times 315 \text{ J}$;	[1]
	energy used to heat water = 4200×70 ;	[1]
	and aluminium = $0.25 \times s \times 70$;	[1]
	therefore $s = \frac{(1000 \times 315 - 4200 \times 70)}{(0.25 \times 70)} = 1200 \mathrm{J kg^{-1} K^{-1}};$	[1]
		[4 max]

B1. Part 2

(a)	no change;	[1]
	because temperature is constant;	[1]
		[2 max]

(b)	450 J;	[1]
	since there is no change in dU then $dQ=dW$;	[1]
	OWTTE;	

- (c) $\Delta W = p \Delta V$; $p = 10^5, \Delta V = 3 \times 10^{-3}$; therefore $\Delta W = 300 \text{ J}$; [1] [3 max]
- (d) from $\Delta Q = \Delta U + \Delta W$, $-800 = \Delta U 300$; [1] to give $\Delta U = -500 \text{ J}$; [1] Note that the negative sign is necessary (or 'decreased by') so deduct [1] if no negative sign.

[2 max]

[2 max]

(e) the work done is zero; [1] therefore energy absorbed is equal to change of internal energy from $Y \rightarrow Z = 500 J$; [1] [2 max]

(f)	net work done by the gas;	[1]
	$= 0.5 \times 10^5 \times 3 \times 10^{-3} = 150 \mathrm{J};$	[1]
		[2 max]

(g) total work done = 150 J, total energy absorbed = 950 J; [1] $Eff = \frac{150}{950} = 0.16$; [1] or by $Eff = \frac{Q_H - Q_C}{Q_H}$; [1]

 $=\frac{(950-800)}{950}=0.16;$ [1]

B2. Part 1

(a)

[1] for each correctly drawn and named force

(b) (i) calculation of acceleration from $a = \frac{2s}{t^2}$; [1] to give $a = 2.47 \text{ m s}^{-2}$; [1]

[1] [2 max]

[2 max]

[3 max]

(ii) component of weight down the plane = $M g \sin 50^{\circ}$ [1] = 7.51M [1] (Do not penalise for omission of unit)

(c) $F = \mu_k N$; [1] = $\mu_k Mg \cos 50^\circ = 6.31 M \mu_k$; [1] (Do not penalise for omission of unit) [2 max]

(d)	accelerating force = $M(7.51 - 6.31\mu_k)$;	[1]
	$= M \times 2.47 \text{ (mass} \times \text{acceleration)}$	[1]
	to give $\mu_k = 0.80$;	[1]
		[3 max]

(e)	recognise that $\mu_s = \tan \theta$;	[1]
	to give $\mu_s = 0.84$;	[1]
		[2 max]

B2. Part 2

(a) $F_{\rm B}$ $F_{\rm E}$

 electric;
 [1]

 magnetic;
 [1]

 [2 max]

(b) (i) electric force
$$F_{\rm E} = qE$$
 [1 max]

(ii) magnetic force
$$F_{\rm B} = Bqv$$
 [1 max]

(c) for no deflection
$$F_{\rm E} = F_{\rm B}$$
; [1]

to give
$$v = \frac{E}{B}$$
; [1]

(d) (i) at any point along the path the magnetic force is at right angles to the velocity of the ion; and the speed of the ion is constant; [1] OWTTE; [1]
e.g. 'there is a force acting at right angles to the velocity of the ion and this will produce a constant centripetal acceleration since the velocity is constant'. An answer such as 'the force is at right angles' would be worth [1]. Look for a bit more detail for [2].

(ii)
$$Bqv = \frac{Mv^2}{r}$$
; [1]
to give $r = \frac{Mv}{Bq}$; [1]

(e) diagram should show:

ion source and ion accelerator;	[1]
velocity selector;	[1]
region of uniform magnetic field;	[1]
separation of paths of isotopes;	[1]

description should:

mention the principle of crossed fields for velocity selection;	[1]
the reason for velocity selection <i>i.e.</i> r will depend only on M;	[1]

The diagram and description should be taken together and the marks need not necessarily be apportioned [4] + [2]. The above scheme essentially shows what should be mentioned to get full marks.

[6 max]

B3. Part 1

(a)	let $d = kv^2$;	[1]
	choose $v = 20$, $d = 60$ to give $k = 0.15$;	[1]
	choose $v = 30$, $d = 135$ to give k = 0.15;	[1]
	since k is the same d is proportional to v^2 ;	[1]
	(i.e. they should show that they understand the proportionality and then use two	
	points to verify this proportionality.)	

[4 max]

[1]

(b) candidates could use a KE – work done argument or kinematic argument e.g. $\Delta(KE) = \frac{1}{2}mv^2 = Fd$;

where <i>F</i> is the braking force;	[1]
if the braking force F is constant then $d \propto v^2$;	[1]

or

if <i>F</i> is constant than <i>a</i> is constant;	[1]
so $v^2 = u^2 + 2ad$;	[1]
$v = 0$ therefore $d \propto u^2$;	[1]
	[3 max]

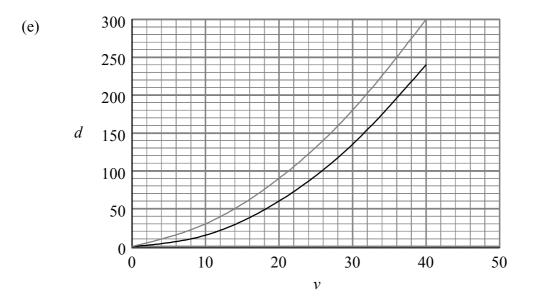
(c) (i) from the graph d = 60 m; [1] average speed = 10 m s⁻¹; [1] $t = \frac{60}{10} = 6.0$ s; [1]

or

[1]
[1]
[1]

[3 max]

(ii)	use $v^2 = u^2 + 2ad$ to find <i>a</i> ;	[1]
	to give $a = 3.3 \text{ m s}^{-2}$;	[1]
	use $F = m a$ to give $F = 5000$ N;	[1]
	If they have calculated a in (i) then this is easier for them!	


use $Fd = \frac{1}{2}mv^2$;	[1]
use $Fd = \frac{1}{2}mv^2$;	[1]

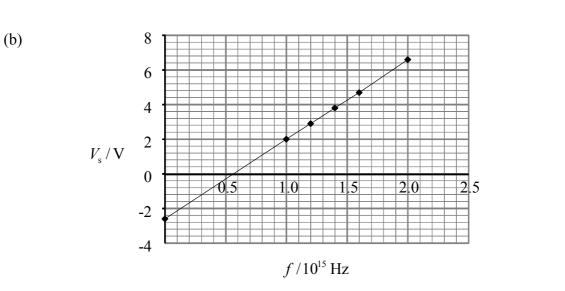
$$=\frac{1}{2}(1500)\times(20)^{2};$$
 [1]

to give F = 5000 N; [1]

(d) reaction time or thinking time; explanation of what this is;
(*i.e. something like 'when a driver sees an incident that causes him to brake it takes some time before he reacts' receives* [2] *but just 'reaction time' receives* [1])

[2 max]

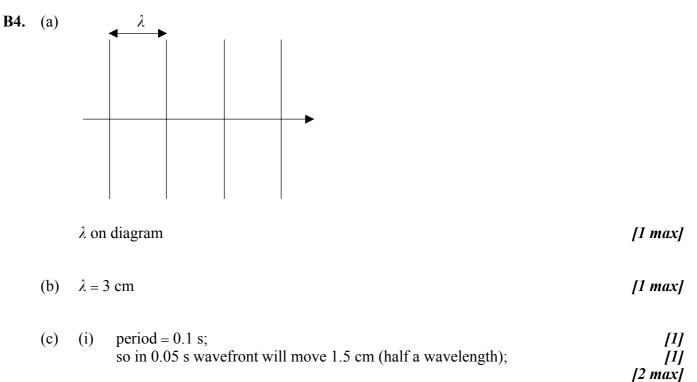
rough correct shape;	[1]
explanation: reaction time is constant;	[1]
therefore each point on the braking distance graph will be increased by an amount	
proportional to the speed;	[1]
OWTTE;	


[3 max]

[1] [1]

[1 max]

B3. Part 2


(a)	Answers will be open ended but a good answer should mention the following points: the Einstein theory says that light consists of photons and the energy of each	
	photon is dependent on the frequency of the light;	[1]
	a minimum amount of energy is required to remove an electron from a metal;	[1]
	the frequency of red light is such that photons do not possess this minimum	
	energy;	[1]
	and so no electrons are emitted and no current will be registered;	[1]
	UV photons have enough energy to emit electrons and so a current is registered;	[1]
		[4 max]

straight line graph (Do not deduct the mark if the graph has not been extrapolated to f = 0but it must go to $V_s = 0$ for the mark.)

(c)	(i)	recognise that f_0 is the intercept on the f axis at $V_s = 0$;	[1]
		$f_0 = 6.0 (\pm 1.0) \times 10^{14} \mathrm{Hz};$	[1]
			[2 max]

- (ii) recognise that the equation of the line is $Ve = hf \phi$; [1] $slope = \frac{h}{e}$; [1] $= 4.1(\pm 0.3) \times 10^{-15}$ to give $h = 6.6(\pm 0.4) \times 10^{-34}$ Js; [1] [3 max]
- (iii) work function found from V intercept = $2.6 \text{ V} \pm 0.4 \text{ V}$; [1] to give $2.6 \text{ eV} (\pm 0.4 \text{ eV})$; [1] (Do not penalise for negative value) could also calculate from the value of h above and $f_0, \phi = hf_0$; [1] = 2.6 eV; [1] [2 max]

negative cosine graph [1 max] (ii)

(d)	each point on a wave front acts as a source of secondary 'wavelets';	[1]
	the envelope of waves from these point sources, in the forward direction, forms the new wave front;	[1]
	OWTTE;	

diagram should show incident angle $\angle QAP$ and reflected angle $\angle PAD$ correctly labelled; notition of reflected wave front CD and aar

labelled;	[1] + [1]
and correct position of reflected wave front CD;	[1]
explanation: In the time that B reaches C the wavelet from A will have reached D;	[1]
since the waves travel in the same medium $AD = BC$;	[1]
and since $\angle ABC = \angle ADC = 90^{\circ}$;	[1]
then $\triangle ABC = \triangle ADC$;	[1]
hence angle $i = angle r;$	[1]
(i.e. clear diagram in conjunction with good explanation will receive [8].)	

[8 max]

(e)	(i)	recognise that the refractive index is ratio of the speeds; to give $n = 1.5$; use $1.5 = \frac{\sin r}{\sin 35^{\circ}}$; to give $r = 59^{\circ}$; (If they get i and r the wrong way round to give $r = 22^{\circ}$ then award [2] out of [[1] [1] [1] [1] [4].) [4 max]
	(ii)	the wave fronts will be totally reflected at the boundary; since critical angle = $\sin^{-1}\left(\frac{1}{n}\right)$; = 42°; hence waves are incident at an angle greater than the critical angle;	[1] [1] [1] [4 max]
(f)	(i)	3.35 m; for destructive interference at Y the path difference between the waves must be half a wavelength $(\frac{1}{2}\lambda)$	[1] [1] [2 max]
	(ii)	will decrease; since λ goes down; and therefore path difference will be smaller; OWTTE;	[1] [1] [1] [3 max]
	(iii)	a sound of frequency 442 Hz; with a beat frequency of 4 Hz; or something like 'a sound frequency 442 Hz which varies in intensity with a regular frequency of 4 Hz". Note that a qualitative answer scores zero marks.	[1] [1]
			[2 max]