MARKSCHEME

November 2001

PHYSICS

Higher Level

Paper 2

SECTION A

A1. (a) recognise to use $P=I^{2} R$;
correct substitution to give $P=1.8 \mathrm{~W}$;
(b) error in $I^{2}=4 \%$;
error in $I^{2} R=14 \%$;
therefore absolute uncertainty $= \pm 0.3 \mathrm{~W}$;
(c)

labelled axes with correct units;
[1]
suitable scale (should fill at least half the grid);
data points (zero point must be included);
best fit line;
(d) $4 \Omega(\pm 1 \Omega)$
[1 max]
(e) yes;
because of the large error in determining the actual maximum of the graph;

A2. (a) (i) use $v=\sqrt{2 g h}$ to get $4.0 \mathrm{~m} \mathrm{~s}^{-1}$

[1 max]

(ii) use $v=\sqrt{2 g h}$ to get $3.5 \mathrm{~m} \mathrm{~s}^{-1}$
(iii) $\Delta p=m \Delta v=0.2 \times 7.5$;
$=1.5 \mathrm{~N} \mathrm{~s}$;
(Award [1] for 0.1 Ns and use e.c.f. in (b) below.)
(b) (i) the total change in momentum (accept impulse)
(ii) total momentum $=\frac{1}{2} 50 \times \Delta t=1.5 \mathrm{~N} \mathrm{~s}$;
to give $\Delta t=0.06 \mathrm{~s}$;
e.c.f. from above gives $\Delta t=0.004 \mathrm{~s}$;

A3. (a) combine $F=m g_{0}=G \frac{M m}{R_{p}{ }^{2}}$;

$$
G M=g_{0} R_{p}{ }^{2} ;
$$

substitute in $V=-G \frac{M}{R}$ to get $V=-\frac{g_{0} R_{p}{ }^{2}}{R}$;
(b) (i) from the graph when $R=2.5 \times 10^{6} \mathrm{~m}, V=-9.8(\pm 0.2) \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$;

$$
\text { substitute into } g_{0}=\frac{V}{R_{p}} \text { to give } g_{0}=3.9 \mathrm{~m} \mathrm{~s}^{-2}\left(\pm 0.3 \mathrm{~m} \mathrm{~s}^{-2}\right) \text {; }
$$

(ii) distance from the centre $=5.5 \times 10^{6} \mathrm{~m}$
and ; V at $5.5 \times 10^{6} \mathrm{~m}=4.2 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$
change in potential $=(9.8-4.4) \times 10^{6} \mathrm{Jkg}^{-1}=5.4(\pm 0.4) \times 10^{6} \mathrm{Jkg}^{-1}$;
gain in PE of satellite $=3000 \times 5.6 \times 10^{6} \mathrm{Jkg}^{-1}$;

$$
=1.7 \times 10^{10} \mathrm{~J}
$$

If they use $3.0 \times 10^{6} \mathrm{~m}$ from the centre the answer is $5.4 \times 10^{9} \mathrm{~J}$.
(Award [2] out of [3] for this answer.)

A4. (a) ${ }_{7}^{14} \mathrm{~N}+{ }_{0}^{1} \mathrm{n}={ }_{6}^{14} \mathrm{C}+{ }_{1}^{1} \mathrm{H}$
(b) (i) since C-14 is radioactive it will transmute to another element OWTTE
(ii) use $A=A_{0} \mathrm{e}^{-\lambda t}$;
$\lambda=\frac{0.7}{5600}$;
$\mathrm{t}=\frac{5600}{0.7} \log _{e} \frac{13.2}{15.5} ;$
to give $t=1300$ years;
Alternatively,
use $A=A_{0} \mathrm{e}^{-\lambda t}$
$\frac{A_{0}}{A}=\mathrm{e}^{\lambda t}=\frac{15.5}{13.2}=1.17$;
$\lambda t=0.16, \lambda t_{\frac{1}{2}}=\ln 2=0.69$; [1]
$t=\frac{0.16}{0.19} \times 5600=1300$ years ;

Whichever method, essentially award [1] for the right equation, [2] for a reasonable attempt at the arithmetic, and [1] for the correct answer.

If they try and attempt to answer by estimating the fraction of half-lives $\frac{2.3}{7.75} \times 5600=1700$ years then award a maximum of [2]-[1] for the idea and [1] for the 'correct' arithmetic.
(c) the coal is 'older' than several half-lifes;
so activity is too weak to detect;

OWTTE;

SECTION B

B1. Part 1

(a) (i) 400 g
(ii) $Q=m \mathrm{~L}=0.4 \times 2.3 \times 10^{6}$ (i.e. formula and correct substitution)

$$
=9.2 \times 10^{5} \mathrm{~J} \text {; }
$$

(iii) rate $=\frac{\text { energy }}{\text { time }}$;

$$
\begin{aligned}
& =\frac{9.2 \times 10^{5}}{900} \\
& \simeq 1000 \mathrm{~W}
\end{aligned}
$$

(iv) because of all the energy losses to the surroundings
(b) use $\frac{d Q}{d t}=-k A \frac{d \theta}{d x}$;
correct substitution $1000=\frac{200 \times 5 \times 10^{-2} \times d \theta}{6 \times 10^{-3}}$;
to give $d \theta=0.6^{\circ} \mathrm{C}$;
(c) Any sensible discussion of appropriate physicse.g.
only a small amount of the base is actually in contact with the burner;
so there will be a layer of air between the burner and the base that accounts for most of the temperature drop (or air is a poor conductor)
aluminum is a good conductor
flame has to be a higher temperature than base for energy transfer to take place;
(d) energy supplied to water $=1000 \times 315 \mathrm{~J}$; [1]
energy used to heat water $=4200 \times 70$; [1]
and aluminium $=0.25 \times s \times 70$; [1]
therefore $s=\frac{(1000 \times 315-4200 \times 70)}{(0.25 \times 70)}=1200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$;

B1. Part 2

(a) no change;
because temperature is constant;
[1]
(b) 450 J ;
since there is no change in $d U$ then $d Q=d W$;
OWTTE;
(c) $\Delta W=p \Delta V$;
$p=10^{5}, \Delta V=3 \times 10^{-3} ; \quad$ [1]
therefore $\Delta W=300 \mathrm{~J}$;
(d) from $\Delta Q=\Delta U+\Delta W,-800=\Delta U-300$;
to give $\Delta U=-500 \mathrm{~J}$;
Note that the negative sign is necessary (or 'decreased by') so deduct [1] if no negative sign.
(e) the work done is zero;
therefore energy absorbed is equal to change of internal energy from $\mathrm{Y} \rightarrow \mathrm{Z}=500 \mathrm{~J}$;
(f) net work done by the gas; [1]
$=0.5 \times 10^{5} \times 3 \times 10^{-3}=150 \mathrm{~J} ; \quad$ [1] [2 max]
(g) total work done $=150 \mathrm{~J}$, total energy absorbed $=950 \mathrm{~J}$;
$E f f=\frac{150}{950}=0.16 ;$
or by $E f f=\frac{Q_{H}-Q_{C}}{Q_{H}}$;
$=\frac{(950-800)}{950}=0.16$;

B2. Part 1

(a)

[1] for each correctly drawn and named force
(b) (i) calculation of acceleration from $a=\frac{2 s}{t^{2}}$;
to give $a=2.47 \mathrm{~m} \mathrm{~s}^{-2}$;
(ii) component of weight down the plane $=M g \sin 50^{\circ}$
$=7.51 \mathrm{M}$
(Do not penalise for omission of unit)
$=7.51 \mathrm{M}$
(Do not penalise for omission of unit)
(c) $\quad F=\mu_{k} N$; [1]
$=\mu_{k} M g \cos 50^{\circ}=6.31 M \mu_{k} ;$
(Do not penalise for omission of unit)

(e) recognise that $\mu_{\mathrm{s}}=\tan \theta$; [1]
to give $\mu_{\mathrm{s}}=0.84$; [1]

B2. Part 2

(a)

electric; [1]
magnetic;
(b) (i) electric force $F_{\mathrm{E}}=q E$
(ii) magnetic force $F_{\mathrm{B}}=B q v$
(c) for no deflection $F_{\mathrm{E}}=F_{\mathrm{B}}$;
to give $v=\frac{E}{B}$;
(d) (i) at any point along the path the magnetic force is at right angles to the velocity of the ion; and the speed of the ion is constant;
OWTTE;
e.g. 'there is a force acting at right angles to the velocity of the ion and this will produce a constant centripetal acceleration since the velocity is constant'.
An answer such as 'the force is at right angles' would be worth [1]. Look for a bit more detail for [2].
(ii) $B q v=\frac{M v^{2}}{r}$;
to give $r=\frac{M v}{B q}$;
(e) diagram should show:
ion source and ion accelerator; [1]
velocity selector; [1]
region of uniform magnetic field; [1]
separation of paths of isotopes; [1]
description should:
mention the principle of crossed fields for velocity selection;
the reason for velocity selection i.e. r will depend only on M;
The diagram and description should be taken together and the marks need not necessarily be apportioned [4] + [2]. The above scheme essentially shows what should be mentioned to get full marks.

B3. Part 1

(a) let $d=\mathrm{k} v^{2}$;
choose $v=20, d=60$ to give $\mathrm{k}=0.15$;
choose $v=30, d=135$ to give $\mathrm{k}=0.15$;
since k is the same d is proportional to v^{2};
(i.e. they should show that they understand the proportionality and then use two points to verify this proportionality.)
(b) candidates could use a KE - work done argument or kinematic argument
e.g. $\Delta(\mathrm{KE})=\frac{1}{2} m v^{2}=F d$;
where F is the braking force;
if the braking force F is constant then $d \propto v^{2}$;
or
if F is constant than a is constant;
so $v^{2}=u^{2}+2 a d$;
$v=0$ therefore $d \propto u^{2}$;
(c) (i) from the graph $d=60 \mathrm{~m}$;
average speed $=10 \mathrm{~m} \mathrm{~s}^{-1} ; \quad$ [1]
$t=\frac{60}{10}=6.0 \mathrm{~s}$;
or
from the graph $d=60 \mathrm{~m}$; [1]
use $v^{2}=u^{2}+2 a d$ to give $a=3.3 \mathrm{~m} \mathrm{~s}^{-2}$; [1]
use $v=u+a t$ to give $t=6.1 \mathrm{~s}(6.0 \mathrm{~s})$; [1]
(ii) use $v^{2}=u^{2}+2 a d$ to find a; [1]
to give $a=3.3 \mathrm{~m} \mathrm{~s}^{-2}$; [1]
use $F=m a$ to give $F=5000 \mathrm{~N}$;
If they have calculated a in (i) then this is easier for them!
or
use $F d=\frac{1}{2} m v^{2}$;
$=\frac{1}{2}(1500) \times(20)^{2}$;
to give $F=5000 \mathrm{~N}$;
(d) reaction time or thinking time;
explanation of what this is;
(i.e. something like 'when a driver sees an incident that causes him to brake it takes some time before he reacts' receives [2] but just 'reaction time' receives [1])
(e)

rough correct shape;
explanation: reaction time is constant;
therefore each point on the braking distance graph will be increased by an amount proportional to the speed;
OWTTE;

B3. Part 2

(a) Answers will be open ended but a good answer should mention the following points: the Einstein theory says that light consists of photons and the energy of each photon is dependent on the frequency of the light;
a minimum amount of energy is required to remove an electron from a metal;
the frequency of red light is such that photons do not possess this minimum energy;
and so no electrons are emitted and no current will be registered;
UV photons have enough energy to emit electrons and so a current is registered;
(b)

straight line graph
(Do not deduct the mark if the graph has not been extrapolated to $f=0$
but it must go to $V_{\mathrm{s}}=0$ for the mark.)
(c) (i) recognise that f_{0} is the intercept on the f axis at $V_{\mathrm{S}}=0$;
$f_{0}=6.0(\pm 1.0) \times 10^{14} \mathrm{~Hz}$;
(ii) recognise that the equation of the line is $V \mathrm{e}=\mathrm{h} f-\phi$;
slope $=\frac{h}{e}$;
$=4.1(\pm 0.3) \times 10^{-15}$
to give $h=6.6(\pm 0.4) \times 10^{-34} \mathrm{Js}$;
(iii) work function found from V intercept $=2.6 \mathrm{~V} \pm 0.4 \mathrm{~V}$;
(Do not penalise for negative value)
could also calculate from the value of h above and $f_{0}, \phi=h f_{0}$;

B4. (a)

λ on diagram
(b) $\lambda=3 \mathrm{~cm}$
(c) (i) period $=0.1 \mathrm{~s}$;
(ii) negative cosine graph
[1 max]
(d) each point on a wave front acts as a source of secondary 'wavelets';
the envelope of waves from these point sources, in the forward direction, forms the new wave front;
OWTTE;
(d)

diagram should show incident angle $\angle \mathrm{QAP}$ and reflected angle $\angle \mathrm{PAD}$ correctly labelled;
and correct position of reflected wave front CD;
explanation: In the time that B reaches C the wavelet from A will have reached D ;
and since $\angle \mathrm{ABC}=\angle \mathrm{ADC}=90^{\circ}$; [1]
then $\triangle \mathrm{ABC} \equiv \triangle \mathrm{ADC}$; [1]
hence angle $\mathrm{i}=$ angle r ;
(i.e. clear diagram in conjunction with good explanation will receive [8].)
(e) (i) recognise that the refractive index is ratio of the speeds; [1]
to give $n=1.5$; [1]
use $1.5=\frac{\sin r}{\sin 35^{\circ}}$; [1]
to give $r=59^{\circ}$; [1](If they get i and r the wrong way round to give $r=22^{\circ}$ then award [2] out of [4].)[4 max]
(ii) the wave fronts will be totally reflected at the boundary; [1]
since critical angle $=\sin ^{-1}\left(\frac{1}{n}\right)$; [1]$=42^{\circ}$;[1]
hence waves are incident at an angle greater than the critical angle; [1]
(f) (i) 3.35 m ; [1]for destructive interference at Y the path difference between the wavesmust be half a wavelength ($1 / 2 \lambda$)
(ii) will decrease; [1]
since λ goes down; [1]
and therefore path difference will be smaller; [1]OWTTE;
(iii) a sound of frequency 442 Hz ; [1]with a beat frequency of 4 Hz ;[1]or something like 'a sound frequency 442 Hz which varies in intensity witha regular frequency of 4 Hz ". Note that a qualitative answer scores zeromarks.

