Paper E

As a guideline, this paper should be completed in 1 hour.

You will need a Graphics Display Calculator (GDC) for this examination.

#### Section A [29 marks]

1. [Maximum 4 marks]

Solve the following equations for  $0^{\circ} \le x \le 180^{\circ}$ .

- a)  $3\sin\theta + \cos\theta = 0$
- b)  $4\cos^2\theta 1 = 0$
- 2. [Maximum 6 marks]

The following table shows the number of people in a car on the Golden Gate Bridge for a one-hour period on a morning in September.

| Number of people<br>(x)   | 1   | 2   | 3   | 4   | 5  | 6  |
|---------------------------|-----|-----|-----|-----|----|----|
| Frequency<br>( <i>f</i> ) | 357 | 251 | 165 | 123 | 66 | 38 |

Find,

- a) the median,
- b) the standard deviation of the distribution,
- c) the mean.
- 3. [Maximum 6 marks]
  - a) Find  $\int (3x-1)^4 dx$
  - b) Find  $\int_{1}^{5} (5\sqrt{x}) dx$

# **IB SL Paper 2 Practice Papers**

# Paper E

4. [Maximum 7 marks]

The population of Mali has increasing since 1981 at an exponential rate that satisfies the equation,

$$N = 7e^{kt}$$
.

where N = the population at *t* years.

After 20 years, the population of Mali is known to be 11.54 million.

- a) Show that the value of *k* correct to 2 significant figures is 0.025.
- b) If the initial year is 1981 (t = 0), determine in what year the population of Mali was 10 million.
- 5. [Maximum 6 marks]

The 4<sup>th</sup> term of an arithmetic sequence is -64 and the 10<sup>th</sup> term is 8.

- a) Find the first term of the sequence,
- b) Find the common difference of the sequence,
- c) Find the sum of the first 50 terms of the sequence.

# Paper E

### Section B [31 marks]

6. [Maximum mark 16]



- i) The diagram above shows a parallelogram *PQRS*. Find the length of,
  - a) PQ,
  - b) QR,
  - c) QS. [4 marks]
- ii) Find the angle QPS.

- [4 marks]
- iii) Find the area of the triangle *QPS*, and hence find the area of the parallelogram. [4 marks]
- iv) *Q* has the coordinates (4,5) and *R* has the coordinate (9,1). Write down the equation of the line passing through both *Q* and *R* as a vector equation in the form  $r = \begin{pmatrix} x \\ y \end{pmatrix} + t \begin{pmatrix} a \\ b \end{pmatrix}$ . [4 marks]

www.ibmaths.com

- 7. [Maximum mark 15]
  - i) A company manufactors electronic calculators. The batteries of the calculator are normally distributed with a lifespan of 220 hours and standard deviation of 15 hours.
    - a) What proportion of calculator batteries stop working after 195 hours? [2 marks]
    - b) By use of a normal distribution diagram illustrate the proportion of batteries that have a lifespan of between 210 and 235 hours.

Find this proportion.

[4 marks]

c) The company produces 3000 calculators in a month. It makes a profit of \$35 on each calculator not returned, and loses \$25 for each calculator that is returned to the factory.

The condition for a calculator being returned is having a battery life of less than 190 hours.

Find the projected profit that that company will make in one month. [6 marks]

ii) A second factory produces a similar brand of calculator, such that the battery life is normally distributed with a mean of 230 hours and a standard deviation of 18.

Given that 90% of the batteries produced are between a and b, and that the values of a and b are such that they are symmetrically about the mean and a < b, find the values of aand b. [5 marks]

| Paper E |                                                                                                                                                                                  |                                                                              | IB SL Paper 2 Practice Papers |                         |    |                      |  |  |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|-------------------------|----|----------------------|--|--|--|--|
| 1.      | a)                                                                                                                                                                               | 162°                                                                         | b)                            | 60°, 120°               |    |                      |  |  |  |  |
| 2.      | a)                                                                                                                                                                               | 2                                                                            | b)                            | $\sigma = 1.43$         | c) | $\overline{X} = 2.4$ |  |  |  |  |
| 3.      | a)                                                                                                                                                                               | $\frac{\left(3x-1\right)^5}{15}+c$                                           | b)                            | 33.9 units <sup>2</sup> |    |                      |  |  |  |  |
| 4.      | b)                                                                                                                                                                               | 1995 or 1996                                                                 |                               |                         |    |                      |  |  |  |  |
| 5.      | a)                                                                                                                                                                               | -100                                                                         | b)                            | 12                      | c) | 247000               |  |  |  |  |
| 6.      | i)                                                                                                                                                                               | a) 8.6                                                                       | b)                            | 6.4                     | c) | 9.22                 |  |  |  |  |
|         | ii)                                                                                                                                                                              | 74.2°                                                                        |                               |                         |    |                      |  |  |  |  |
|         | iii)                                                                                                                                                                             | Triangle = 26.5 units <sup>2</sup> and parallelogram = 53 units <sup>2</sup> |                               |                         |    |                      |  |  |  |  |
|         | iv) $r = \begin{pmatrix} 4 \\ 5 \end{pmatrix} + t \begin{pmatrix} 5 \\ -4 \end{pmatrix}$ or $r = \begin{pmatrix} 9 \\ 1 \end{pmatrix} + t \begin{pmatrix} -5 \\ 4 \end{pmatrix}$ |                                                                              |                               |                         |    |                      |  |  |  |  |
| 7.      | i)                                                                                                                                                                               | a) 0.9522                                                                    | b)                            | 0.589                   | c) | \$100217             |  |  |  |  |
|         | ii)                                                                                                                                                                              | <i>a</i> = 194.7, <i>b</i> = 265.3                                           |                               |                         |    |                      |  |  |  |  |

www.ibmaths.com