Paper A
IB SL Paper 2 Practice Papers
As a guideline, this paper should be completed in 1 hour.
You will need a Graphics Display Calculator (GDC) for this examination.

Section A [32 marks]

1. [Maximum 4 marks]
$\$ 8000$ is invested at a compound rate of interest of 5.6% per annum.
a) What will the value of the investment be at the end of 7 years?
b) The investment exceeds $\$ 13000$ in the $\mathrm{n}^{\text {th }}$ year.

Find the value of n.
2. [Maximum 6 marks]

The Venn diagram below shows the probabilities of events taking place.

Given that events A and B are independent, find 2 values of x.

Paper A

IB SL Paper 2 Practice Papers

3. [Maximum 6 marks]

Evaluate $\int_{1}^{2}\left(\frac{3}{x+3}\right) d x$, giving your answer to 3 significant figures.
4. [Maximum 5 marks]

In the expansion of $(2-a x)^{5}$ the coefficient of x^{2} is 5 .

Find the value of a.
5. [Maximum 5 marks]

Find the area in the triangle ABC drawn below.

6. [Maximum mark 5]

Students sitting a Maths HL paper have marks that are normally distributed with a mean of 58 marks and a standard deviation of 16.
The mark to achieve a grade 7 is set so that only 5% of the students can achieve a 7.

Calculate, to the nearest integer, the mark required to achieve a 7.

Paper A

IB SL Paper 2 Practice Papers

Section B [28 marks]

7. [Maximum mark 13]
i) The population of a city is growing at a rate that is proportional to the city's present population. Mathematicians have designed a model to predict the future population of the city. It is written below.
$P=A e^{k t}$
A and k are constants, t is the time in years and P is the population.
When the initial model was designed in 1994 the population of the city was 130000. At the start of 1997 (when $t=3$) the population was 160000 .
a) Find the value of the constants A and k. Give your answers to 3 significant figures.
b) Use your model to find the year in which the city's population first exceeded 220000.
[5 marks]
ii) An arithmetic series has -3 as its third term and 21 as its ninth term. Find the sum of the first ten numbers in the sequence.
[3 marks]
iii) A geometric series has a sum to infinity of 44. Its second term is $8 \frac{1}{4}$.
Find two set sets of solutions for the common ratio, r, and the first term, a, of the sequence.
[5 marks]

Paper A

IB SL Paper 2 Practice Papers
8. [Maximum mark 15]
i) The diagram below shows a sector of a circle with a radius of r and an angle at its origin of θ, measured in radians.

The perimeter of the sector shape is 14 cm .

a) Write an equation for θ, in terms of r. [3 marks]
b) Write down an expression for the area of the sector, A, in terms of r.
[2 marks]
c) Use your answer to b) to find the value(s) of r, when the area is $12 \mathrm{~cm}^{2}$.
[4 marks]
ii) Find, in degrees, the values of θ in the interval $0^{\circ} \leq \theta \leq 360^{\circ}$ for which

$$
4 \sin ^{2} \theta-2 \sin \theta=4 \cos ^{2} \theta-1
$$

Give your answers to the nearest degree.
[6 marks]

Paper A

IB SL Paper 2 Practice Papers

Answers

1. a) $\$ 11715$
b) $\mathrm{n}=8$ (9 acceptable)
2. $x=0.2, x=0.3$
3. 0.463
4. $\mathrm{a}= \pm \frac{1}{4}$
5. $\quad 13.4$ units 2
6. 84 or 85 marks
7. i)
a) $\mathrm{A}=130000, \mathrm{k}=0.0692$
b) 2001
ii) 70
iii) $u_{1}=11, r=\frac{3}{4}$ and $u_{1}=33, r=\frac{1}{4}$
8. i)
a) $2 r+\theta r=14$
b) $\quad \mathrm{A}=\frac{1}{2} \theta \mathrm{r}^{2}$
c) $r=3, r=4$
ii) $\theta=49^{\circ}, 131^{\circ}, 210^{\circ}, 330^{\circ}$
