As a guideline, this paper should be completed in 1 hour.

You will need a Graphics Display Calculator (GDC) for this examination.

Section A [32 marks]

1. [Maximum 4 marks]

\$8000 is invested at a compound rate of interest of 5.6% per annum.

- a) What will the value of the investment be at the end of 7 years?
- b) The investment exceeds \$13000 in the n^{th} year. Find the value of n.
- 2. [Maximum 6 marks]

The Venn diagram below shows the probabilities of events taking place.

Given that events A and B are independent, find 2 values of x.

www.ibmaths.com

3. [Maximum 6 marks]

Evaluate $\int_{1}^{2} \left(\frac{3}{x+3}\right) dx$, giving your answer to 3 significant figures.

4. [Maximum 5 marks]

In the expansion of $(2 - ax)^5$ the coefficient of x^2 is 5.

Find the value of a.

5. [Maximum 5 marks]

Find the area in the triangle *ABC* drawn below.

6. [Maximum mark 5]

Students sitting a Maths HL paper have marks that are normally distributed with a mean of 58 marks and a standard deviation of 16. The mark to achieve a grade 7 is set so that only 5% of the students can achieve a 7.

Calculate, to the nearest integer, the mark required to achieve a 7.

www.ibmaths.com

Section B [28 marks]

- 7. [Maximum mark 13]
 - i) The population of a city is growing at a rate that is proportional to the city's present population. Mathematicians have designed a model to predict the future population of the city. It is written below.

 $P = Ae^{kt}$

A and k are constants, t is the time in years and P is the population. When the initial model was designed in 1994 the population of the city was 130000. At the start of 1997 (when t = 3) the population was 160000.

- a) Find the value of the constants *A* and *k*. Give your answers to 3 significant figures.
- b) Use your model to find the year in which the city's population first exceeded 220000. [5 marks]
- ii) An arithmetic series has -3 as its third term and 21 as its ninth term. Find the sum of the first ten numbers in the sequence.
 [3 marks]
- iii) A geometric series has a sum to infinity of 44. Its second term is $8\frac{1}{4}$.

Find two set sets of solutions for the common ratio, r, and thefirst term, a, of the sequence.[5 marks]

- 8. [Maximum mark 15]
 - i) The diagram below shows a sector of a circle with a radius of r and an angle at its origin of θ , measured in radians.

The perimeter of the sector shape is 14 cm.

- a) Write an equation for θ , in terms of *r*. [3 marks]
- b) Write down an expression for the area of the sector, *A*, in terms of *r*. [2 marks]
- c) Use your answer to b) to find the value(s) of *r*, when the area is 12 cm². [4 marks]
- ii) Find, in degrees, the values of θ in the interval $0^{\circ} \le \theta \le 360^{\circ}$ for which

$$4\sin^2\theta - 2\sin\theta = 4\cos^2\theta - 1$$

Give your answers to the nearest degree. [6 marks]

www.ibmaths.com

Paper A			IB SL Paper 2 Practice Papers			
Ans	wers					
1.	a)	\$11	715		b)	n = 8 (9 acceptable)
2.	x = 0.2, x = 0.3					
3.	0.463					
4.	a =	$\pm \frac{1}{4}$				
5.	13.4 units ²					
6.	84 or 85 marks					
7.	i)	a)	A = 130000, k = 0.06	92	b)	2001
	ii)	70				
	iii)	<i>U</i> ₁ =	11, $r = \frac{3}{4}$ and $u_1 = 33$,	$\Gamma = \frac{1}{4}$		
8.	i)	a)	$2r + \theta r = 14$		b)	$A = \frac{1}{2}\theta r^2$
		c)	r = 3, r = 4			
	ii)	θ =	49°, 131°, 210°, 330°			