

MATHEMATICS STANDARD LEVEL PAPER 2

Thursday 8 May 2008 (morning)

1 hour 30 minutes

Candidate session number								
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

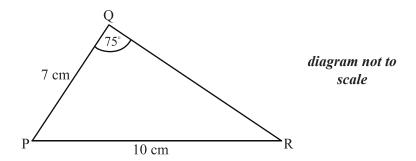
SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1. [Maximum mark: 7]

In a school with 125 girls, each student is tested to see how many sit-up exercises (sit-ups) she can do in one minute. The results are given in the table below.

Number of sit-ups	Number of students	Cumulative number of students
15	11	11
16	21	32
17	33	p
18	q	99
19	18	117
20	8	125


(This question continues on the following page)

(a)	(i)	Write down the value of p .	
	(ii)	Find the value of q .	[3 marks]
(b)	Find	the median number of sit-ups.	[2 marks]
(c)	Find	the mean number of sit-ups.	[2 marks]

2. [Maximum mark: 6]

The diagram below shows triangle PQR. The length of [PQ] is 7 cm, the length of [PR] is 10 cm, and $P\hat{Q}R$ is 75° .

(a)	Find PRQ.	[3 marks]
(b)	Find the area of triangle PQR.	[3 marks]

[Maximum mark: 6] 3.

The diagram below shows a circle centre O, with radius r. The length of arc ABC is 3π cm and $\hat{AOC} = \frac{2\pi}{9}$.

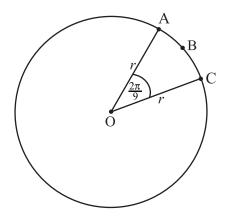
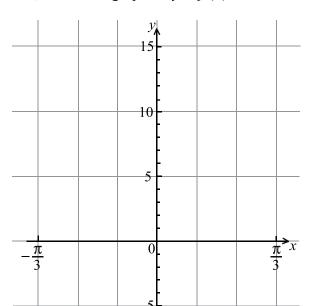


diagram not to scale

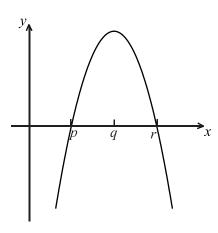
(a)	Find the value of r .	[2 marks
(b)	Find the perimeter of sector OABC.	[2 marks
(c)	Find the area of sector OABC.	[2 marks


[3 marks]

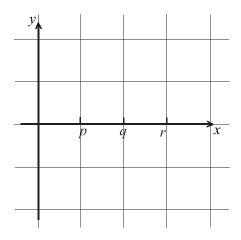
[3 marks]

4. [Maximum mark: 6]

Let
$$f(x) = 4 \tan^2 x - 4 \sin x$$
, $-\frac{\pi}{3} \le x \le \frac{\pi}{3}$.


(a) On the grid below, sketch the graph of y = f(x).

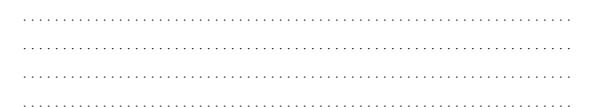
(b) Solve the equation f(x) = 1.


5. [Maximum mark: 6]

The diagram below shows part of the graph of the **gradient** function, y = f'(x).

(a) On the grid below, sketch a graph of y = f''(x), clearly indicating the x-intercept.

[2 marks]


(b) Complete the table, for the graph of y = f(x).

[2 marks]

		<i>x</i> -coordinate
(i)	Maximum point on f	
(ii)	Inflexion point on f	

(c)	Justify	your	answer	to	part	(b)	(ii)).
-----	---------	------	--------	----	------	-----	------	----

[2 marks]

0712

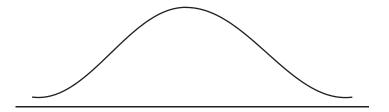
6.	[Ma	eximum mark: 7]	
		factory makes switches. The probability that a switch is defective is 0.04. factory tests a random sample of 100 switches.	
	(a)	Find the mean number of defective switches in the sample.	[2 marks]
	(b)	Find the probability that there are exactly six defective switches in the sample.	[2 marks]
	(c)	Find the probability that there is at least one defective switch in the sample.	[3 marks]

7. [Maximum mark: 7]	ximum mark	. /
----------------------	------------	-----

Let $v = 3i + 4j + k$ Find the value of p	and $\mathbf{w} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}$.	The vector $\mathbf{v} + p\mathbf{w}$	is perpendicular to w.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.


8. [Maximum mark: 13]

A box contains a large number of biscuits. The weights of biscuits are normally distributed with mean 7 g and standard deviation 0.5 g.

- (a) One biscuit is chosen at random from the box. Find the probability that this biscuit
 - (i) weighs less than 8 g;
 - (ii) weighs between 6 g and 8 g.

[4 marks]

- (b) Five percent of the biscuits in the box weigh less than d grams.
 - (i) Copy and complete the following normal distribution diagram, to represent this information, by indicating d, and shading the appropriate region.

(ii) Find the value of d.

[5 marks]

(c) The weights of biscuits in another box are normally distributed with mean μ and standard deviation 0.5 g. It is known that 20 % of the biscuits in this second box weigh less than 5 g.

Find the value of μ .

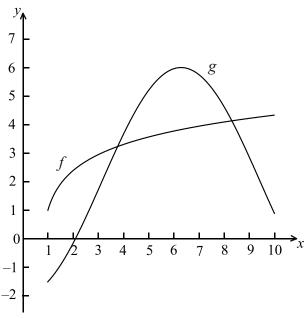
[4 marks]

9. [Maximum mark: 18]

The point O has coordinates (0, 0, 0), point A has coordinates (1, -2, 3) and point B has coordinates (-3, 4, 2).

-11-

- (a) (i) Show that $\overrightarrow{AB} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix}$.
 - (ii) Find BÂO. [8 marks]
- (b) The line L_1 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix}$.


Write down the coordinates of two points on L_1 . [2 marks]

- (c) The line L_2 passes through A and is parallel to \overrightarrow{OB} .
 - (i) Find a vector equation for L_2 , giving your answer in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
 - (ii) Point C(k, -k, 5) is on L_2 . Find the coordinates of C. [6 marks]
- (d) The line L_3 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix} + p \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$, and passes through the point C.

Find the value of p at C. [2 marks]

10. [Maximum mark: 14]

The following diagram shows the graphs of $f(x) = \ln(3x-2)+1$ and $g(x) = -4\cos(0.5x)+2$, for $1 \le x \le 10$.

- (a) Let A be the area of the region **enclosed** by the curves of f and g.
 - (i) Find an expression for A.
 - (ii) Calculate the value of A.

[6 marks]

- (b) (i) Find f'(x).
 - (ii) Find g'(x).

[4 marks]

(c) There are two values of x for which the gradient of f is equal to the gradient of g. Find both these values of x.

[4 marks]