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Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with 
no working.  Answers must be supported by working and/or explanations.  In particular, solutions found 
from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a 
solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be 
given for a correct method, provided this is shown by written working.  You are therefore advised to show 
all working.

1. [Maximum mark:  20]

 (a) A curve is defined by the implicit equation 2 6 � 62 2xy x y+ − = .  
  

  show that the tangent at the point A with coordinates 1 2
�

,





 has gradient 
20
�

. [6 marks]

 

 (b) The line x =1 cuts the curve at point A, with coordinates  1 2
�

,





, and at point B. 

  Find, in the form r =








 +











a
b

s
c
d

  (i) the equation of the tangent at A;

  (ii) the equation of the normal at B. [10 marks]

 (c) Find the acute angle between the tangent at A and the normal at B. [4 marks]
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2. [Total mark: 22]

 Part a [Maximum mark:  13]

 (a) The function  f  is defined by f x x( ) ( )= + −2 �2 .
  The function g is defined by g x ax b( ) = + , where a and b are constants.  

  Find the value of a, a > 0  and the corresponding value of b, such that

f g x x x( )( ) = + −� 6 �
�

2 . [8 marks]

 (b) The functions h and k are defined by h x x( ) = +5 2  and k x cx x( ) = − +2 2  
respectively.  Find the value of c such that h k x( )( ) = 0  has equal roots. [5 marks]

 Part B [Maximum mark:  9]

 (a) Express the complex number 1+ i  in the form a be
i π

, where a b, ∈ +
  . [2 marks]

 (b) Using the result from (a), show that 
1

2
+





i n

, where n∈ , has only eight distinct 
values. [5 marks]

 (c) hence solve the equation z8 1 0− = . [2 marks]
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3. [Total mark:  30]

 Part a [Maximum mark:  18]

On a particular road, serious accidents occur at an average rate of two per week and can be 
modelled using a Poisson distribution.

 (a) (i) What is the probability of at least eight serious accidents occurring during 
a particular four-week period?

  (ii) Assume that a year consists of thirteen periods of four weeks.  Find the 
probability that in a particular year, there are more than nine four-week 
periods in which at least eight serious accidents occur. [10 marks]

 (b) Given that the probability of at least one serious accident occurring in a period 
of n weeks is greater than 0.99, find the least possible value of n, n∈ +

 . [8 marks]

 Part B [Maximum mark:  12]

  A continuous random variable X has probability density function defined by

f x
c

x
x

( )
,

,
= +

− ≤ ≤




�

2
�

2 �

0

2 for

otherwise.

 (a) Find the exact value of the constant c in terms of π . [5 marks]

 (b) sketch the graph of f x( )  and hence state the mode of the distribution. [3 marks]

 (c) Find the exact value of E ( )X . [4 marks]
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4. [Maximum mark:  25]

 The function  f  is defined by f x x x( ) tan= +cosec 2 .

 (a) sketch the graph of  f  for − ≤ ≤π π
2 2

x .
  
  Hence state

  (i) the x-intercepts;

  (ii) the equations of the asymptotes;

  (iii) the coordinates of the maximum and minimum points. [8 marks]

 (b) show that the roots of f x( ) = 0  satisfy the equation
2 2 2 1 0� 2cos cos cosx x x− − + = . [5 marks]

 (c) show that the x-coordinates of the maximum and minimum points on the 
curve satisfy the equation � � 2 2 05 � 2cos cos cos cosx x x x− + + − = . [8 marks]

 (d) show that f x f x( ) ( )π π− + + = 0 . [4 marks]
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5.   [Total mark:  23]

 Part a [Maximum mark:  11]

The acceleration in m s–2 of a particle moving in a straight line at time t seconds, t > 0 , is 

given by the formula a
t

= −
+
1

1 2( )
.  When t =1, the velocity is 8 m s–1.

 (a) Find the velocity when t = � . [6 marks]

 (b) Find the limit of the velocity as t → ∞ . [1 mark]

 (c) Find the exact distance travelled between t =1 and t = � . [4 marks]

 Part B [Maximum mark:  12]

 Given that y x x= −e , 

 (a) find 
d
d
y
x

; [2 marks]

 (b) use mathematical induction to prove that, for n∈ +
 , d

d
e

n

n
n xy

x
n x= − −+ −( ) ( )1 1 . [10 marks]


