

MATHEMATICS
HIGHER LEVEL
PAPER 2

Tuesday 6 November 2007 (morning)
2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 20]
(a) A curve is defined by the implicit equation $2 x y+6 x^{2}-3 y^{2}=6$.

Show that the tangent at the point A with coordinates $\left(1, \frac{2}{3}\right)$ has gradient $\frac{20}{3}$. [6 marks]
(b) The line $x=1$ cuts the curve at point A, with coordinates $\left(1, \frac{2}{3}\right)$, and at point B .

Find, in the form $\boldsymbol{r}=\binom{a}{b}+s\binom{c}{d}$
(i) the equation of the tangent at A ;
(ii) the equation of the normal at B .
(c) Find the acute angle between the tangent at A and the normal at B.
2. [Total mark: 22]

Part A [Maximum mark: 13]
(a) The function f is defined by $f(x)=(x+2)^{2}-3$.

The function g is defined by $g(x)=a x+b$, where a and b are constants.
Find the value of $a, a>0$ and the corresponding value of b, such that

$$
f(g(x))=4 x^{2}+6 x-\frac{3}{4}
$$

(b) The functions h and k are defined by $h(x)=5 x+2$ and $k(x)=c x^{2}-x+2$ respectively. Find the value of c such that $h(k(x))=0$ has equal roots.

Part B [Maximum mark: 9]
(a) Express the complex number $1+\mathrm{i}$ in the form $\sqrt{a} \mathrm{e}^{\mathrm{i} \frac{\pi}{b}}$, where $a, b \in \mathbb{Z}^{+}$.
(b) Using the result from (a), show that $\left(\frac{1+\mathrm{i}}{\sqrt{2}}\right)^{n}$, where $n \in \mathbb{Z}$, has only eight distinct
values.
(c) Hence solve the equation $z^{8}-1=0$.
3. [Total mark: 30]

Part A [Maximum mark: 18]
On a particular road, serious accidents occur at an average rate of two per week and can be modelled using a Poisson distribution.
(a) (i) What is the probability of at least eight serious accidents occurring during a particular four-week period?
(ii) Assume that a year consists of thirteen periods of four weeks. Find the probability that in a particular year, there are more than nine four-week periods in which at least eight serious accidents occur.
(b) Given that the probability of at least one serious accident occurring in a period of n weeks is greater than 0.99 , find the least possible value of $n, n \in \mathbb{Z}^{+}$.

Part B [Maximum mark: 12]
A continuous random variable X has probability density function defined by

$$
f(x)=\left\{\begin{array}{cl}
\frac{c}{4+x^{2}}, & \text { for }-\frac{2}{\sqrt{3}} \leq x \leq 2 \sqrt{3} \\
0, & \text { otherwise. }
\end{array}\right.
$$

(a) Find the exact value of the constant c in terms of π.
(b) Sketch the graph of $f(x)$ and hence state the mode of the distribution.
(c) Find the exact value of $\mathrm{E}(X)$.
4. [Maximum mark: 25]

The function f is defined by $f(x)=\operatorname{cosec} x+\tan 2 x$.
(a) Sketch the graph of f for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

Hence state
(i) the x-intercepts;
(ii) the equations of the asymptotes;
(iii) the coordinates of the maximum and minimum points.
(b) Show that the roots of $f(x)=0$ satisfy the equation
$2 \cos ^{3} x-2 \cos ^{2} x-2 \cos x+1=0$.
(c) Show that the x-coordinates of the maximum and minimum points on the curve satisfy the equation $4 \cos ^{5} x-4 \cos ^{3} x+2 \cos ^{2} x+\cos x-2=0$.
(d) Show that $f(\pi-x)+f(\pi+x)=0$.
5. [Total mark: 23]

Part A [Maximum mark: 11]
The acceleration in $\mathrm{m} \mathrm{s}^{-2}$ of a particle moving in a straight line at time t seconds, $t>0$, is given by the formula $a=-\frac{1}{(1+t)^{2}}$. When $t=1$, the velocity is $8 \mathrm{~m} \mathrm{~s}^{-1}$.
(a) Find the velocity when $t=3$. [6 marks]
(b) Find the limit of the velocity as $t \rightarrow \infty$.
(c) Find the exact distance travelled between $t=1$ and $t=3$.
[4 marks]

Part B [Maximum mark: 12]
Given that $y=x \mathrm{e}^{-x}$,
(a) find $\frac{\mathrm{d} y}{\mathrm{~d} x}$;
(b) use mathematical induction to prove that, for $n \in \mathbb{Z}^{+}, \frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}=(-1)^{n+1} \mathrm{e}^{-x}(n-x)$. [10 marks]

