

MATHEMATICS
STANDARD LEVEL
PAPER 2

Tuesday 8 May 2007 (morning)
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 21]

The following diagram shows a pentagon ABCDE , with $\mathrm{AB}=9.2 \mathrm{~cm}, \mathrm{BC}=3.2 \mathrm{~cm}$, $\mathrm{BD}=7.1 \mathrm{~cm}, \mathrm{AED}=110^{\circ}, \mathrm{A} \hat{\mathrm{DE}}=52^{\circ}$ and $\mathrm{ABD}=60^{\circ}$.

(a) Find AD .
(b) Find DE.
(c) The area of triangle BCD is $5.68 \mathrm{~cm}^{2}$. Find DB C .
(d) Find AC.
(e) Find the area of quadrilateral ABCD .
2. [Maximum mark: 12]

There are 50 boxes in a factory. Their weights, $w \mathrm{~kg}$, are divided into 5 classes, as shown in the following table.

Class	Weight (kg)	Number of boxes
A	$9.5 \leq w<18.5$	7
B	$18.5 \leq w<27.5$	12
C	$27.5 \leq w<36.5$	13
D	$36.5 \leq w<45.5$	10
E	$45.5 \leq w<54.5$	8

(a) Show that the estimated mean weight of the boxes is 32 kg .
(b) There are x boxes in the factory marked "Fragile". They are all in class E. The estimated mean weight of all the other boxes in the factory is 30 kg . Calculate the value of x.
(c) An additional y boxes, all with a weight in class D , are delivered to the factory. The total estimated mean weight of all of the boxes in the factory is less than 33 kg . Find the largest possible value of y.
3. [Maximum mark: 17]

In this question, distance is in metres, time is in minutes.

Two model airplanes are each flying in a straight line.
At 13:00 the first model airplane is at the point $(3,2,7)$. Its position vector after t minutes is given by $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 7\end{array}\right)+t\left(\begin{array}{c}3 \\ 4 \\ 10\end{array}\right)$.
(a) Find the speed of the model airplane.

At 13:00 the second model airplane is at the point $(-5,10,23)$. After two minutes, it is at the point $(3,16,39)$.
(b) Show that its position vector after t minutes is given by $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}-5 \\ 10 \\ 23\end{array}\right)+t\left(\begin{array}{l}4 \\ 3 \\ 8\end{array}\right)$.
(c) The airplanes meet at point Q .
(i) At what time do the airplanes meet?
(ii) Find the position of Q .
(d) Find the angle θ between the paths of the two airplanes.
4. [Maximum mark: 16]

Two restaurants, Center and New, sell fish rolls and salads.
Let F be the event a customer chooses a fish roll.
Let S be the event a customer chooses a salad.
Let N be the event a customer chooses neither a fish roll nor a salad.
In the Center restaurant $\mathrm{P}(F)=0.31, \mathrm{P}(S)=0.62, \mathrm{P}(N)=0.14$.
(a) Show that $\mathrm{P}(F \cap S)=0.07$.
(b) Given that a customer chooses a salad, find the probability the customer also chooses a fish roll.
(c) Are F and S independent events? Justify your answer.

At New restaurant, $\mathrm{P}(N)=0.14$. Twice as many customers choose a salad as choose a fish roll. Choosing a fish roll is independent of choosing a salad.
(d) Find the probability that a fish roll is chosen.
5. [Maximum mark: 24]

Let $f(x)=p-\frac{3 x}{x^{2}-q^{2}}$, where $p, q \in \mathbb{R}^{+}$.
Part of the graph of f, including the asymptotes, is shown below.

(a) The equations of the asymptotes are $x=1, x=-1, y=2$. Write down the value of
(i) p;
(ii) q.
(b) Let R be the region bounded by the graph of f, the x-axis, and the y-axis.
(i) Find the negative x-intercept of f.
(ii) Hence find the volume obtained when R is revolved through 360° about the x-axis.
(Question 5 continued)
(c) (i) Show that $f^{\prime}(x)=\frac{3\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{2}}$.
(ii) Hence, show that there are no maximum or minimum points on the graph of f.
[8 marks]
(d) Let $g(x)=f^{\prime}(x)$. Let A be the area of the region enclosed by the graph of g and the x-axis, between $x=0$ and $x=a$, where $a>0$. Given that $A=2$, find the value of a.

