MATHEMATICS
STANDARD LEVEL
PAPER 2

Tuesday 8 May 2007 (morning)
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Total mark: 25]

Part A [Maximum mark: 10]
The following diagram shows part of the graph of a quadratic function, with equation in the form $y=(x-p)(x-q)$, where $p, q \in \mathbb{Z}$.

(a) Write down
(i) the value of p and of q;
(ii) the equation of the axis of symmetry of the curve.
(b) Find the equation of the function in the form $y=(x-h)^{2}+k$, where $h, k \in \mathbb{Z}$. [3 marks]
(c) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(d) Let T be the tangent to the curve at the point $(0,5)$. Find the equation of T.

(Question 1 continued)

Part B [Maximum mark: 15]

The function f is defined as $f(x)=\mathrm{e}^{x} \sin x$, where x is in radians. Part of the curve of f is shown below.

There is a point of inflexion at A , and a local maximum point at B . The curve of f intersects the x-axis at the point C .
(a) Write down the x-coordinate of the point C .
(b) (i) Find $f^{\prime}(x)$.
(ii) Write down the value of $f^{\prime}(x)$ at the point B .
(c) Show that $f^{\prime \prime}(x)=2 \mathrm{e}^{x} \cos x$.
(d) (i) Write down the value of $f^{\prime \prime}(x)$ at A , the point of inflexion.
(ii) Hence, calculate the coordinates of A.
(e) Let R be the region enclosed by the curve and the x-axis, between the origin and C .
(i) Write down an expression for the area of R.
(ii) Find the area of R.
2. [Maximum mark: 14]

The following diagram shows the triangle AOP , where $\mathrm{OP}=2 \mathrm{~cm}, \mathrm{AP}=4 \mathrm{~cm}$ and $\mathrm{AO}=3 \mathrm{~cm}$.

diagram not to

scale
(a) Calculate AÔP, giving your answer in radians.

The following diagram shows two circles which intersect at the points A and B . The smaller circle C_{1} has centre O and radius 3 cm , the larger circle C_{2} has centre P and radius 4 cm , and $\mathrm{OP}=2 \mathrm{~cm}$. The point D lies on the circumference of C_{1} and E on the circumference of C_{2}. Triangle AOP is the same as triangle AOP in the diagram above.

(b) Find AÔB , giving your answer in radians.
(Question 2 continued)
(c) Given that APB is 1.63 radians, calculate the area of
(i) sector PAEB;
(ii) sector OADB.
(d) The area of the quadrilateral AOBP is $5.81 \mathrm{~cm}^{2}$.
(i) Find the area of AOBE.
(ii) Hence find the area of the shaded region AEBD.
3. [Maximum mark: 12]

A pair of fair dice is thrown.
(a) Copy and complete the tree diagram below, which shows the possible outcomes.

Let E be the event that exactly one four occurs when the pair of dice is thrown.
(b) Calculate $\mathrm{P}(E)$.

The pair of dice is now thrown five times.
(c) Calculate the probability that event E occurs exactly three times in the five throws.
(d) Calculate the probability that event E occurs at least three times in the five throws.
4. [Maximum mark: 22]

Points P and Q have position vectors $-5 \boldsymbol{i}+11 \boldsymbol{j}-8 \boldsymbol{k}$ and $-4 \boldsymbol{i}+9 \boldsymbol{j}-5 \boldsymbol{k}$ respectively, and both lie on a line L_{1}.
(a) (i) Find $\overrightarrow{P Q}$.
(ii) Hence show that the equation of L_{1} can be written as

$$
\boldsymbol{r}=(-5+s) \boldsymbol{i}+(11-2 s) \boldsymbol{j}+(-8+3 s) \boldsymbol{k} .
$$

The point $\mathrm{R}\left(2, y_{1}, z_{1}\right)$ also lies on L_{1}.
(b) Find the value of y_{1} and of z_{1}.

The line L_{2} has equation $\boldsymbol{r}=2 \boldsymbol{i}+9 \boldsymbol{j}+13 \boldsymbol{k}+t(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})$.
(c) The lines L_{1} and L_{2} intersect at a point T. Find the position vector of T.
(d) Calculate the angle between the lines L_{1} and L_{2}.
5. [Maximum mark: 17]

The function $f(x)$ is defined as $f(x)=3+\frac{1}{2 x-5}, x \neq \frac{5}{2}$.
(a) Sketch the curve of f for $-5 \leq x \leq 5$, showing the asymptotes.
(b) Using your sketch, write down
(i) the equation of each asymptote;
(ii) the value of the x-intercept;
(iii) the value of the y-intercept.
(c) The region enclosed by the curve of f, the x-axis, and the lines $x=3$ and $x=a$, is revolved through 360° about the x-axis. Let V be the volume of the solid formed.
(i) Find $\int\left(9+\frac{6}{2 x-5}+\frac{1}{(2 x-5)^{2}}\right) \mathrm{d} x$.
(ii) Hence, given that $V=\pi\left(\frac{28}{3}+3 \ln 3\right)$, find the value of a.

