

IB DIPLOMA PROGRAMME PROGRAMME DU DIPLÔME DU BI PROGRAMA DEL DIPLOMA DEL BI

MATHEMATICS STANDARD LEVEL PAPER 2

Tuesday 8 May 2007 (morning)

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Total mark: 25]

Part A [Maximum mark: 10]

The following diagram shows part of the graph of a quadratic function, with equation in the form y = (x - p)(x - q), where $p, q \in \mathbb{Z}$.

(a) Write down

- (i) the value of p and of q;
- (ii) the equation of the axis of symmetry of the curve. [3 marks]
- (b) Find the equation of the function in the form $y = (x-h)^2 + k$, where $h, k \in \mathbb{Z}$. [3 marks]

(c) Find
$$\frac{dy}{dx}$$
. [2 marks]

(d) Let T be the tangent to the curve at the point (0, 5). Find the equation of T. [2 marks]

(This question continues on the following page)

(Question 1 continued)

Part B [Maximum mark: 15]

The function f is defined as $f(x) = e^x \sin x$, where x is in radians. Part of the curve of f is shown below.

There is a point of inflexion at A, and a local maximum point at B. The curve of f intersects the *x*-axis at the point C.

(a)	Writ	e down the <i>x</i> -coordinate of the point C.	[1 mark]
(b)	(i)	Find $f'(x)$.	
	(ii)	Write down the value of $f'(x)$ at the point B.	[4 marks]
(c)	Shov	w that $f''(x) = 2e^x \cos x$.	[2 marks]
(d)	(i)	Write down the value of $f''(x)$ at A, the point of inflexion.	
	(ii)	Hence, calculate the coordinates of A.	[4 marks]
(e)	Let R be the region enclosed by the curve and the x -axis, between the origin and C.		
	(i)	Write down an expression for the area of R .	
	(ii)	Find the area of <i>R</i> .	[4 marks]

2. [Maximum mark: 14]

The following diagram shows the triangle AOP, where OP = 2 cm, AP = 4 cm and AO = 3 cm.

(a) Calculate AÔP, giving your answer in radians.

The following diagram shows two circles which intersect at the points A and B. The smaller circle C_1 has centre O and radius 3 cm, the larger circle C_2 has centre P and radius 4 cm, and OP = 2 cm. The point D lies on the circumference of C_1 and E on the circumference of C_2 . Triangle AOP is the same as triangle AOP in the diagram above.

(b) Find \hat{AOB} , giving your answer in radians.

[2 marks]

[3 marks]

(Question 2 continued)

(c)	Given that APB is 1.63 radians, calculate the area of	
	(i) sector PAEB;	
	(ii) sector OADB.	[5 marks]
(d)	The area of the quadrilateral AOBP is 5.81 cm^2 .	
	(i) Find the area of AOBE.	
	(ii) Hence find the area of the shaded region AEBD.	[4 marks]

3. [Maximum mark: 12]

A pair of fair dice is thrown.

(a) Copy and complete the tree diagram below, which shows the possible outcomes.

Let *E* be the event that **exactly** one four occurs when the pair of dice is thrown.

(b)	Calculate $P(E)$.	[3 marks]
The	pair of dice is now thrown five times.	
(c)	Calculate the probability that event F occurs exactly three times in the five	

(c)	Calculate the probability that event E occurs exactly three times in the five throws.	[3 marks]
(d)	Calculate the probability that event E occurs at least three times in the five throws.	[3 marks]

4. [Maximum mark: 22]

Points P and Q have position vectors -5i+11j-8k and -4i+9j-5k respectively, and both lie on a line L_1 .

- (a) (i) Find \overrightarrow{PQ} .
 - (ii) Hence show that the equation of L_1 can be written as

$$r = (-5+s)i + (11-2s)j + (-8+3s)k$$
. [4 marks]

The point $R(2, y_1, z_1)$ also lies on L_1 .

(b) Find the value of y_1 and of z_1 . [4 marks]

The line L_2 has equation $\mathbf{r} = 2\mathbf{i} + 9\mathbf{j} + 13\mathbf{k} + t(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.

- (c) The lines L_1 and L_2 intersect at a point T. Find the position vector of T. [7 marks]
- (d) Calculate the angle between the lines L_1 and L_2 . [7 marks]

5. [Maximum mark: 17]

The function f(x) is defined as $f(x) = 3 + \frac{1}{2x-5}, x \neq \frac{5}{2}$.

- (a) Sketch the curve of f for $-5 \le x \le 5$, showing the asymptotes. [3 marks]
- (b) Using your sketch, write down
 - (i) the equation of each asymptote;
 - (ii) the value of the *x*-intercept;
 - (iii) the value of the *y*-intercept.
- (c) The region enclosed by the curve of f, the x-axis, and the lines x = 3 and x = a, is revolved through 360° about the x-axis. Let V be the volume of the solid formed.

(i) Find
$$\int \left(9 + \frac{6}{2x-5} + \frac{1}{(2x-5)^2}\right) dx$$
.
(ii) Hence, given that $V = \pi \left(\frac{28}{3} + 3\ln 3\right)$, find the value of *a*. [10 marks]

[4 marks]