IBO

88067302
MATHEMATICS
STANDARD LEVEL
PAPER 2
Friday 3 November 2006 (morning)
1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Total mark: 24]

Part A [Maximum mark: 14]
The following is the cumulative frequency curve for the time, t minutes, spent by 150 people in a store on a particular day.

(This question continues on the following page)

(Question 1 continued)

(a) (i) How many people spent less than 5 minutes in the store?
(ii) Find the number of people who spent between 5 and 7 minutes in the store.
(iii) Find the median time spent in the store.
(b) Given that 40% of the people spent longer than k minutes, find the value of k.
(c) (i) On your answer sheet, copy and complete the following frequency table.

t (minutes)	$0 \leq t<2$	$2 \leq t<4$	$4 \leq t<6$	$6 \leq t<8$	$8 \leq t<10$	$10 \leq t<12$
Frequency	10	23				15

(ii) Hence, calculate an estimate for the mean time spent in the store.

Part B [Maximum mark: 10]
Two fair four-sided dice, one red and one green, are thrown. For each die, the faces are labelled $1,2,3,4$. The score for each die is the number which lands face down.
(a) Write down
(i) the sample space;
(ii) the probability that two scores of 4 are obtained.

Let X be the number of 4 s that land face down.
(b) Copy and complete the following probability distribution for X.

x	0	1	2
$\mathrm{P}(X=x)$			

[3 marks]
(c) Find $\mathrm{E}(X)$.
2. [Maximum mark: 14]

The function f is given by $f(x)=m x^{3}+n x^{2}+p x+q$, where m, n, p, q are integers. The graph of f passes through the point $(0,0)$.
(a) Write down the value of q.
[1 mark]

The graph of f also passes through the point $(3,18)$.
(b) Show that $27 m+9 n+3 p=18$.

The graph of f also passes through the points $(1,0)$ and $(-1,-10)$.
(c) Write down the other two linear equations in m, n and p.
(d) (i) Write down these three equations as a matrix equation.
(ii) Solve this matrix equation. [6 marks]
(e) The function f can also be written $f(x)=x(x-1)(r x-s)$ where r and s are integers. Find r and s.
[3 marks]
3. [Maximum mark: 14]

Clara organizes cans in triangular piles, where each row has one less can than the row below. For example, the pile of 15 cans shown has 5 cans in the bottom row and 4 cans in the row above it.

(a) A pile has 20 cans in the bottom row. Show that the pile contains 210 cans.
[4 marks]
(b) There are 3240 cans in a pile. How many cans are in the bottom row?
(c) (i) There are S cans and they are organized in a triangular pile with n cans in the bottom row. Show that $n^{2}+n-2 S=0$.
(ii) Clara has 2100 cans. Explain why she cannot organize them in a triangular pile.
4. [Maximum mark: 21]

The function f is defined as $f(x)=(2 x+1) \mathrm{e}^{-x}, 0 \leq x \leq 3$. The point $\mathrm{P}(0,1)$ lies on the graph of $f(x)$, and there is a maximum point at Q .
(a) Sketch the graph of $y=f(x)$, labelling the points P and Q .
(b) (i) Show that $f^{\prime}(x)=(1-2 x) \mathrm{e}^{-x}$.
(ii) Find the exact coordinates of Q .
[7 marks]
(c) The equation $f(x)=k$, where $k \in \mathbb{R}$, has two solutions. Write down the range of values of k.
[2 marks]
(d) Given that $f^{\prime \prime}(x)=\mathrm{e}^{-x}(-3+2 x)$, show that the curve of f has only one point of inflexion.
(e) Let R be the point on the curve of f with x-coordinate 3 . Find the area of the region enclosed by the curve and the line (PR).
[7 marks]
5. [Maximum mark: 17]

The following diagram shows two semi-circles. The larger one has centre O and radius 4 cm . The smaller one has centre P, radius 3 cm , and passes through O. The line (OP) meets the larger semi-circle at S . The semi-circles intersect at Q .

(a) (i) Explain why OPQ is an isosceles triangle.
(ii) Use the cosine rule to show that $\cos \mathrm{OP} \mathrm{Q}=\frac{1}{9}$.
(iii) Hence show that $\sin \mathrm{O} \hat{\mathrm{P}} \mathrm{Q}=\frac{\sqrt{80}}{9}$.
(iv) Find the area of the triangle OPQ .
(b) Consider the smaller semi-circle, with centre P .
(i) Write down the size of $O \hat{P} Q$.
(ii) Calculate the area of the sector OPQ.
(c) Consider the larger semi-circle, with centre O. Calculate the area of the sector QOS.
(d) Hence calculate the area of the shaded region.

