MATHEMATICAL METHODS STANDARD LEVEL PAPER 2

Wednesday 8 May 2002 (morning)

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all five questions from Section A and one question from Section B.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures.
- Write the make and model of your calculator on the front cover of your answer booklets *e.g.* Casio *fx-9750G*, Sharp EL-9600, Texas Instruments TI-85.

Please start each question on a new page. You are advised to show all working, where possible. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Incorrect answers with no working will normally receive **no** marks.

SECTION A

Answer all five questions from this section.

1. [Maximum mark: 10]

The diagram shows a triangle ABC in which AC = $7 \frac{\sqrt{2}}{2}$, BC = 6, ABC = 45°.

(a) Use the fact that
$$\sin 45^\circ = \frac{\sqrt{2}}{2}$$
 to show that $\sin BAC = \frac{6}{7}$. [2 marks]

The point D is on (AB), between A and B, such that $\sin B\hat{D}C = \frac{6}{7}$.

- (b) (i) Write down the value of $\hat{BDC} + \hat{BAC}$.
 - (ii) Calculate the angle BCD.

(c) Show that
$$\frac{\text{Area of } \Delta BDC}{\text{Area of } \Delta BAC} = \frac{BD}{BA}$$
. [2 marks]

2. [Maximum mark: 11]

Ashley and Billie are swimmers training for a competition.

(a) Ashley trains for 12 hours in the first week. She decides to increase the amount of time she spends training by 2 hours each week. Find the total number of hours she spends training during the first 15 weeks.

[3 marks]

- (b) Billie also trains for 12 hours in the first week. She decides to train for 10% longer each week than the previous week.
 - (i) Show that in the third week she trains for 14.52 hours.
 - (ii) Find the total number of hours she spends training during the first 15 weeks.

[4 marks]

(c) In which week will the time Billie spends training first exceed 50 hours?

[4 marks]

3. [Maximum mark: 19]

Three of the coordinates of the parallelogram STUV are S(-2,-2), T(7,7), U(5,15).

(a) Find the vector \overrightarrow{ST} and hence the coordinates of V.

[5 marks]

(b) Find a vector equation of the line (UV) in the form $\mathbf{r} = \mathbf{p} + \lambda \mathbf{d}$ where $\lambda \in \mathbb{R}$.

[2 marks]

(c) Show that the point E with position vector $\begin{pmatrix} 1 \\ 11 \end{pmatrix}$ is on the line (UV), and find the value of λ for this point.

[2 marks]

The point W has position vector $\begin{pmatrix} a \\ 17 \end{pmatrix}$, $a \in \mathbb{R}$.

- (d) (i) If $|\overrightarrow{EW}| = 2\sqrt{13}$, show that one value of a is -3 and find the other possible value of a.
 - (ii) For a = -3, calculate the angle between \overrightarrow{EW} and \overrightarrow{ET} .

[10 marks]

4. [Maximum mark: 17]

(i) A taxi company has 200 taxi cabs. The cumulative frequency curve below shows the fares in dollars (\$) taken by the cabs on a particular morning.

(This question continues on the following page)

(Question 4(i) continued)

- (a) Use the curve to estimate
 - (i) the median fare;
 - (ii) the number of cabs in which the fare taken is \$35 or less.

[2 marks]

The company charges 55 cents per kilometre for distance travelled. There are no other charges. Use the curve to answer the following.

(b) On that morning, 40% of the cabs travel less than a km. Find the value of a.

[4 marks]

(c) What percentage of the cabs travel more than 90 km on that morning?

[4 marks]

- (ii) Two fair dice are thrown and the number showing on each is noted. The sum of these two numbers is S. Find the probability that
 - (a) S is less than 8;

[2 marks]

(b) at least one die shows a 3;

[2 marks]

(c) at least one die shows a 3, given that S is less than 8.

[3 marks]

5. [Maximum mark: 13]

Consider functions of the form $y = e^{-kx}$.

(a) Show that $\int_0^1 e^{-kx} dx = \frac{1}{k} (1 - e^{-k}).$

[3 marks]

- (b) Let k = 0.5
 - (i) Sketch the graph of $y = e^{-0.5x}$, for $-1 \le x \le 3$, indicating the coordinates of the y-intercept.
 - (ii) Shade the region enclosed by this graph, the x-axis, y-axis and the line x = 1.
 - (iii) Find the area of this region.

[5 marks]

(c) (i) Find $\frac{dy}{dx}$ in terms of k, where $y = e^{-kx}$.

The point P(1, 0.8) lies on the graph of the function $y = e^{-kx}$.

- (ii) Find the value of k in this case.
- (iii) Find the gradient of the tangent to the curve at P.

[5 marks]

SECTION B

Answer one question from this section.

Statistical Methods

- **6.** [Maximum mark: 30]
 - (i) The mass of packets of a breakfast cereal is normally distributed with a mean of 750 g and standard deviation of 25 g.
 - (a) Find the probability that a packet chosen at random has mass
 - (i) less than 740 g;
 - (ii) at least 780 g;
 - (iii) between 740 g and 780 g.

[5 marks]

(b) Two packets are chosen at random. What is the probability that both packets have a mass which is less than 740 g?

[2 marks]

(c) The mass of 70% of the packets is more than x grams. Find the value of x.

[2 marks]

(ii) Three schools from the same city enter students for an examination in which successful candidates can achieve one of three grades: *Pass*, *Credit*, *Distinction*. The results are shown in the following table

	Pass	Credit	Distinction
School A	8	22	40
School B	12	45	53
School C	11	29	20

It may be assumed that a student's result is independent of the school attended.

(a) The following table gives the expected frequencies for the above data.

	Pass	Credit	Distinction
School A	а	b	33.0
School B	c	d	51.8
School C	7.75	24.0	28.3

- (i) Calculate the values a, b, c, d.
- (ii) Find χ^2 for this data.

[7 marks]

(This question continues on the following page)

(Question 6 (ii) continued)

- (b) Newspapers wish to use these results to make comparisons between the schools. Based on the value of χ^2 , decide whether there is justification for the statement 'success in the examination depends on which school is attended'. Examine the statement
 - (i) at the 5% level of significance;
 - (ii) at the 10% level of significance.

[4 marks]

(iii) A scientist is investigating the way in which the length of a metal rod varies with temperature. She reads the length y mm at different temperatures x °C. From a set of these readings, she calculates the following results.

$$\overline{x}=200$$
 , $\overline{y}=1000$, $s_x=2.31$, $s_y=11.7$, $s_{xy}=26.1$

- (a) Find
 - (i) the product-moment correlation coefficient r;
 - (ii) the equation of the regression line of y on x;
 - (iii) the length of the rod when the temperature is 170°C.

[8 marks]

(b) Which of the following diagrams most closely resembles the set of readings taken by the scientist? Give a reason for your answer.

[2 marks]

Further Calculus

- 7. [Maximum mark: 30]
 - (i) (a) Using the substitution $u = \cos x$ or otherwise, find $\int \sin^3 x dx$. [3 marks]
 - (b) **Hence** find the area between the graph of $y = \sin^3 x$ and the x-axis, between x = 0 and $x = \frac{\pi}{2}$. [2 marks]
 - (ii) Let the function f be defined by $f(x) = \frac{2}{1+x^3}$, $x \ne -1$.
 - (a) (i) Write down the equation of the vertical asymptote of the graph of f.
 - (ii) Write down the equation of the horizontal asymptote of the graph of f.
 - (iii) Sketch the graph of f in the domain $-3 \le x \le 3$. [4 marks]
 - (b) (i) Using the fact that $f'(x) = \frac{-6x^2}{(1+x^3)^2}$, show that the second derivative $f''(x) = \frac{12x(2x^3-1)}{(1+x^3)^3}$.
 - (ii) Find the x-coordinates of the points of inflexion of the graph of f. [6 marks]
 - (c) The table below gives some values of f(x) and 2f(x).

X	f(x)	2f(x)
1	1	2
1.4	0.534188	1.068376
1.8	0.292740	0.585480
2.2	0.171703	0.343407
2.6	0.107666	0.215332
3	0.071429	0.142857

- (i) Use the trapezium rule with five sub-intervals to approximate the integral $\int_{1}^{3} f(x)dx$.
- (ii) Given that $\int_{1}^{3} f(x)dx = 0.637599$, use a diagram to explain why your answer is greater than this. [5 marks]

(This question continues on the following page)

(Question 7 continued)

- (iii) Let $h(x) = \ln 2x \sin(\frac{1}{2}x), x > 0$.
 - (a) Show that h(x) = 0 has a root between 0.5 and 1.

[3 marks]

- (b) The equation h(x) = 0 can be written in the form $x = \frac{1}{2}e^{\sin(\frac{1}{2}x)}$. Let $g(x) = \frac{1}{2}e^{\sin(\frac{1}{2}x)}$
 - (i) Using the iteration formula $x_{n+1} = g(x_n)$ with starting value $x_0 = 1$
 - (a) write down x_1 and x_2 ;
 - (b) find the solution to h(x) = 0, correct to six significant figures.
 - (ii) Find g'(x) and hence show that for any starting value x_0 , the equation $x_{n+1} = g(x_n)$ will always give the root of h(x) = 0. [7 marks]

Further Geometry

- **8.** [Maximum mark: 30]
 - (i) (a) R_1 , R_2 are anti-clockwise rotations of 45° and 60° about the origin. Write down the matrices R_1 , R_2 , using exact values.

[4 marks]

- (b) (i) What transformation is represented by the composition R_1R_2 ?
 - (ii) Hence show that $\cos 105^\circ = \frac{1 \sqrt{3}}{2\sqrt{2}}$.

[5 marks]

- (ii) A linear transformation P maps the point (1,0) to (1,6) and the point (0,1) to (3,4).
 - (a) Write down the matrix P.

[1 mark]

(b) Find the image of each of the points (1, 2) and (-1, 1) under **P**.

[3 marks]

(c) Hence, or otherwise, find the equations of the two lines which are invariant under P.

[4 marks]

(d) Find the area scale factor for the transformation P.

[2 marks]

(iii) A transformation T, representing reflection in a line l, is described by

$$T: \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \frac{1}{17} \begin{pmatrix} -15 & 8 \\ 8 & 15 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 8 \\ -2 \end{pmatrix}.$$

- (a) Find the image of each of the following points under T
 - (i) (0,0);
 - (ii) (8, -2);
 - (iii) (2, -9).

[5 marks]

- (b) Show the points in part (a) and their images on a diagram.
- (c) Hence, or otherwise, find the equation of l in the form ax + by + c = 0, where $a, b, c \in \mathbb{Z}$.

[6 marks]