MARKSCHEME

November 2001

MATHEMATICAL METHODS

Standard Level

Paper 1

1. METHOD 1

$$
\begin{aligned}
& x^{2}=3-2 x \\
& \Rightarrow x^{2}+2 x-3=0 \\
& \Rightarrow(x+3)(x-1)=0 \\
& \Rightarrow x=-3 \quad \text { or } x=1 \\
& \Rightarrow y=3^{2}=9 \text { or } y=1^{2}=1
\end{aligned}
$$

Other point is $\Rightarrow(-3,9)$
(A1(A1)
(C4)

Note: Award (A1)(A0) or (C3) if the answer is not given as coordinates.

METHOD 2

Required point is $(-3,9)$
(G2)
(C4)
[4 marks]
2. $5000(1.065)^{5}=\$ 6850.43 \ldots$
(M3)

Note: Award (M1) for multiplying by 5000 , (M1) for 1.065 , (M1) for raising to the 5 th power.

Value $=\$ 6850$ (nearest \$)
(A1) (C4)

Note: Award (C3) for the answer $\$ 6851$ with no working shown.

3. METHOD 1

Amplitude $a=30$
(A1)
(C1)
Period $\frac{2 \pi}{b}$ (M1)

$$
\begin{equation*}
=\frac{\pi}{2} \tag{A1}
\end{equation*}
$$

$$
\Rightarrow b=4
$$

(A1)
(C3)
OR

$$
\begin{align*}
\text { Frequency } & =b \\
& =\frac{2 \pi}{\pi / 2} \\
\Rightarrow b & =4 \tag{A1}
\end{align*}
$$

METHOD 2

Vertical stretch of scale factor $a=30$
(A1)
(C1)
Horizontal stretch of scale factor $\frac{1}{b}=\frac{1}{4}$ (M1)(A1)

$$
\begin{equation*}
\Rightarrow b=4 \tag{A1}
\end{equation*}
$$

Note: The (M1) (in all METHODS) may be implied. Allow ft only if the (M1) is awarded.
[4 marks]
4.

Recognizing an AP $a=15 d=2 n=20$ (may be implied)
(M1)(A1)
(a) $u_{20}=15+(20-1) 2=53$ (that is, 53 seats in the 20th row)
(A1)
(C2)
(b) $\quad S_{20}=\frac{20}{2}(2(15)+(20-1) 2) \quad\left(\right.$ or $\left.\frac{20}{2}(15+53)\right)$
$=680($ that is, 680 seats in total)
(A1)
5. Number of possible outcomes $=90$.
(a) Set of desired outcomes $=\{10,20,30,40,50,60,70,80,90\}$
\Rightarrow number of desired outcomes $=9$
$\Rightarrow \mathrm{P}($ multiple of 10$)=\frac{9}{90}\left(=\frac{1}{10}\right)$
(A1)
(C2)
(b) METHOD 1

Outcomes giving multiple of $15=\{15,30,45,60,75,90\}$
$\Rightarrow \mathrm{P}($ multiple of 15$)=\frac{6}{90}$
$P($ multiple of 10 and multiple of 15$)=\frac{3}{90}$
$\Rightarrow \mathrm{P}($ multiple of 10 or multiple of 15$)=\frac{9}{90}+\frac{6}{90}-\frac{3}{90}$
$=\frac{12}{90}\left(=\frac{2}{15}\right)$
(A1)
(C2)

METHOD 2
Set of desired outcomes
(M1)
$=\{10,15,20,30,40,45,50,60,70,75,80,90\}$
$\Rightarrow \mathrm{P}($ multiple of 10 or multiple of 15$)=\frac{12}{90}\left(=\frac{2}{15}\right)$
Note: Award (M1) for a reasonable attempt to list the desired outcomes. Allow ft for $\frac{12}{n}$.
6.

(a) 100 students score 40 marks or fewer.
(A1)
(C1)
(b) See graph.
(M1)

Note: Award (M1) for horizontal lines at 200 and 600, and/or vertical lines to points a and b.

$$
a=53(\pm 1), \quad b=75(\pm 1)
$$

(C3)
Note: Accept statements such as middle 50% of scores between 53 and 75 .
7.

Note: Award (A1) for differentiating/integrating $\sin (5 x-3)$, and award (A1) for multiplying/dividing by 5 .
(a) $f^{\prime}(x)=[2 \cos (5 x-3)] 5=10 \cos (5 x-3)$
(A1)(A1)
(C2)
(b) $\quad \int f(x) \mathrm{d}(x)=\frac{-2 \cos (5 x-3)}{5}+c=\frac{-2}{5} \cos (5 x-3)+c$
(A1)(A1)
(C2)
Note: Do not penalise for the absence of c.
8. (a) $\quad a=\frac{\mathrm{d} v}{\mathrm{~d} t}=-10$
(A1)
(C1)
(b) $s=\int u \mathrm{~d} t=50 t-5 t^{2}+c$
(M1)
$40=50(0)-5(0)+c$ (M1)
$s=50 t-5 t^{2}+40$
(A1)
Note: Award (M1) in the first step in part (b) if c is missing, but do not award $\mathbf{f t}$ marks.
9. (a) $f \circ g: x \mapsto 3(x+2)(=3 x+6)$
(A1)
(C1)
Note: Award (A0) for $3 x(x+2)$ or for $3 x+2$.
(b) $\quad f: x \mapsto 3 x \Rightarrow f^{-1}: x \mapsto \frac{x}{3}$

$$
\begin{gather*}
\Rightarrow f^{-1}: 18 \mapsto 6 \tag{A1}\\
g: x \mapsto x+2 \Rightarrow g^{-1}: x \mapsto x-2 \\
\Rightarrow g^{-1}: 18 \mapsto 16 \tag{A1}\\
f^{-1}(18)+g^{-1}(18)=6+16=22 \tag{A1}
\end{gather*}
$$

OR
$f^{-1}: x \mapsto \frac{x}{3} \quad g^{-1}: x \mapsto x-2$
$f^{-1}(18)=6 \quad g^{-1}(18)=16$
$f^{-1}(18)+g^{-1}(18)=6+16=22$ (A1)
[4 marks]
10. (a) $9-x^{2} \geq 0 \Rightarrow x^{2} \leq 9$

$$
\begin{gather*}
\Rightarrow-3 \leq x \leq 3 \tag{A1}\\
\sqrt{9-x^{2}} \neq 0 \Rightarrow-3<x<3 \tag{C2}
\end{gather*}
$$

(A1)
(b) METHOD 1

(M1)
(A1)
(C2)
$\Rightarrow y \geq 1$

METHOD 2

Maximum value of $9-x^{2}$ is $9 \Rightarrow$ minimum value of y is 1
$9-x^{2}$ can be as close to zero as we wish, so there is no limit on how big y can be.
$\Rightarrow y \geq 1$

$$
\begin{equation*}
(A 1) \tag{C2}
\end{equation*}
$$

Note: Award (C1) for $y>0$ with no working shown.
11. (a) $\overrightarrow{\mathrm{AB}}=\binom{4}{3} \quad \overrightarrow{\mathrm{AC}}=\binom{-3}{1}$
(A1)
$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=4(-3)+3(1)=-9$
(A1)
(b) $\quad|\overrightarrow{\mathrm{AB}}|=5 \quad|\overrightarrow{\mathrm{AC}}|=\sqrt{10}$
(M1)
$\cos \theta=\frac{-9}{5 \sqrt{10}}$ or -0.569 (3 s.f.) .
(A1)
(C2)

Note: Award (C1) for part (b) if the answer is given as 124.7° or 125°, and $\cos \theta$ not shown.
12. (a) $2500=5000 \mathrm{e}^{-5 k}$

$$
\begin{align*}
& \Rightarrow \mathrm{e}^{-5 k}=\frac{1}{2} \tag{M1}\\
& \mathrm{e}^{5 k}=2 \Rightarrow 5 k=\ln 2 \tag{C2}\\
& \Rightarrow k=\frac{\ln 2}{5}(=0.139(3 \text { s.f. })) \tag{A1}
\end{align*}
$$

(b) $50=5000 \mathrm{e}^{-k t}$
$\Rightarrow \frac{1}{100}=\mathrm{e}^{-k t}$
(M1)
$\Rightarrow \mathrm{e}^{k t}=100 \Rightarrow k t=\ln 100$
$\Rightarrow t=\frac{\ln 100}{k}=33.2$ (Accept 33.1)
(A1)
(C2)
[4 marks]
13. (a) $f(x)=3 x^{2}-12 x+11$

$$
=3\left(x^{2}-4 x+4\right)+11-12
$$

(M1)
Note: Award (M1) for a reasonable attempt to complete the square.

$$
\begin{align*}
& =3(x-2)^{2}-1 \tag{A1}\\
\Rightarrow h & =2 \quad \text { and } \quad k=-1
\end{align*}
$$

(C1)(C1)
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4)$
(M1)
so the new function is $3(x-5)^{2}+4$
$\Rightarrow p=5, q=4$
(C1)(C1)

METHOD 2

$$
\begin{align*}
g(x) & =3((x-3)-h)^{2}+k+5 \tag{M1}\\
& =3((x-3)-2)^{2}-1+5 \\
& =3(x-5)^{2}+4 \tag{A1}\\
\Rightarrow p & =5 \quad q=4
\end{align*}
$$

14. $\frac{-3+3+a+b}{4}=0 \quad(\Rightarrow a+b=0)$
$\frac{(-3)^{2}+3^{2}+a^{2}+b^{2}}{4}=17$
$\Rightarrow a^{2}+b^{2}=68-18=50$
$a=-b \Rightarrow 2 a^{2}=50$
$\Rightarrow a \pm 5 \quad b=\mp 5 \quad b>a$
$\Rightarrow a=-5 \quad b=5$
(A1) (C2)(C2)
Note: Award the final (A1) only if a and b are both correctly assigned. Award (C3) for the answer $-5,5$ if no working is shown.
15. $\binom{5}{2}\left(x^{3}\right)^{2}\left(-3 y^{2}\right)^{3}$ (M1)

$$
\begin{align*}
& \binom{5}{2}=10,\left(-3 y^{2}\right)^{3}=-27 y^{6} \\
& \text { term }=-270 x^{6} y^{6} \tag{C4}
\end{align*}
$$

