

# MARKSCHEME

#### November 2001

## **MATHEMATICAL METHODS**

## **Standard Level**

## Paper 1

1. METHOD 1

$$x^{2} = 3 - 2x$$
(M1)  

$$\Rightarrow x^{2} + 2x - 3 = 0$$
(A1)  

$$\Rightarrow (x + 3)(x - 1) = 0$$

$$\Rightarrow x = -3 \quad \text{or } x = 1$$

$$\Rightarrow y = 3^{2} = 9 \quad \text{or } y = 1^{2} = 1$$
Other point is 
$$\Rightarrow (-3, 9)$$
(A1(A1) (C4)

Note: Award (A1)(A0) or (C3) if the answer is not given as coordinates.

#### **METHOD 2**



[4 marks]

| <b>3. METHOD 1</b> |
|--------------------|
|--------------------|

| Amplitude $a = 30$                                             | (A1)        | (C1) |
|----------------------------------------------------------------|-------------|------|
| Period $\frac{2\pi}{b}$                                        | (M1)        |      |
| $=\frac{\pi}{2}$                                               | <i>(A1)</i> |      |
| $\Rightarrow b = \overline{4}$                                 | (A1)        | (C3) |
| OR                                                             |             |      |
| Frequency $= b$                                                | (M1)        |      |
| $=\frac{2\pi}{\pi/2}$                                          | (A1)        |      |
| $\Rightarrow b = 4$                                            | (A1)        | (C3) |
| METHOD 2                                                       |             |      |
| Vertical stretch of scale factor $a = 30$                      | (A1)        | (C1) |
| Horizontal stretch of scale factor $\frac{1}{b} = \frac{1}{4}$ | (M1)(A1)    |      |
| $\Rightarrow b = 4$                                            | (A1)        | (C3) |

**Note:** The *(M1)* (in all **METHODS**) may be implied. Allow **ft** only if the *(M1)* is awarded.

| [4 | marks] |
|----|--------|
|----|--------|

| 4. |     | Recognizing an AP $a=15$ $d=2$ $n=20$ (may be implied)                                                     | (M1)(A1)    |      |
|----|-----|------------------------------------------------------------------------------------------------------------|-------------|------|
|    | (a) | $u_{20} = 15 + (20 - 1)2 = 53$ (that is, 53 seats in the 20th row)                                         | (A1)        | (C2) |
|    | (b) | $S_{20} = \frac{20}{2} \left( 2(15) + (20 - 1)2 \right)  \left( \text{or } \frac{20}{2} (15 + 53) \right)$ |             |      |
|    |     | = 680 (that is, 680 seats in total)                                                                        | <i>(A1)</i> | (C2) |

[4 marks]

| 5. N | Number of possible outcomes $= 90$ . (A1)                                                                                                                                                     |                                  |        |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------|
| (a   | Set of desired outcomes = {10, 20, 30, 40, 50, 60, 70, 80, 90}<br>$\Rightarrow$ number of desired outcomes = 9<br>$\Rightarrow$ P(multiple of 10) = $\frac{9}{90} \left(=\frac{1}{10}\right)$ | (A1)                             | (C2)   |
| (t   | b) METHOD 1                                                                                                                                                                                   |                                  |        |
|      | Outcomes giving multiple of $15 = \{15, 30, 45, 60, 75, 90\}$                                                                                                                                 |                                  |        |
|      | $\Rightarrow P(\text{multiple of 15}) = \frac{6}{90}$                                                                                                                                         | (M1)                             |        |
|      | P(multiple of 10 and multiple of 15) $=\frac{3}{90}$                                                                                                                                          |                                  |        |
|      | $\Rightarrow P(\text{multiple of 10 or multiple of 15}) = \frac{9}{90} + \frac{6}{90} - \frac{3}{90}$                                                                                         |                                  |        |
|      | $=\frac{12}{90}\left(=\frac{2}{15}\right)$                                                                                                                                                    | (A1)                             | (C2)   |
|      | METHOD 2                                                                                                                                                                                      |                                  |        |
|      | Set of desired outcomes<br>= {10, 15, 20, 30, 40, 45, 50, 60, 70, 75, 80, 90}                                                                                                                 | (M1)                             |        |
|      | $\Rightarrow P(\text{multiple of 10 or multiple of 15}) = \frac{12}{90} \left( = \frac{2}{15} \right)$                                                                                        | (A1)                             | (C2)   |
| Γ    | <b>Note:</b> Award <i>(M1)</i> for a reasonable attempt to list the desired outcomes. Allow                                                                                                   | w <b>ft</b> for $\frac{12}{n}$ . |        |
|      |                                                                                                                                                                                               | [4]                              | marks] |



| 9.  | (a) | $f \circ g : x \mapsto 3(x+2) \ (= 3x+6)$                                                                      | (A1)         | (C1)      |
|-----|-----|----------------------------------------------------------------------------------------------------------------|--------------|-----------|
|     | Not | e: Award (A0) for $3x(x+2)$ or for $3x+2$ .                                                                    |              |           |
|     | (b) | $f: x \mapsto 3x \Longrightarrow f^{-1}: x \mapsto \frac{x}{3}$                                                |              |           |
|     |     | $\Rightarrow f^{-1}: 18 \mapsto 6$<br>g: x \mapsto x + 2 \Rightarrow g^{-1}: x \mapsto x - 2                   | (A1)         |           |
|     |     | $g: x \mapsto x + 2 \Rightarrow g  : x \mapsto x - 2$ $\Rightarrow g^{-1}: 18 \mapsto 16$                      | (A1)         |           |
|     |     | $f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$                                                                        | (A1)         | (C3)      |
|     |     | OR                                                                                                             |              |           |
|     |     | $f^{-1}: x \mapsto \frac{x}{3}  g^{-1}: x \mapsto x-2$                                                         | (A1)         |           |
|     |     | $f^{-1}(18) = 6$ $g^{-1}(18) = 16$                                                                             | (A1)         |           |
|     |     | $f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$                                                                        | (A1)         | (C3)      |
|     |     |                                                                                                                |              | [4 marks] |
| 10. | (a) | $9 - x^2 \ge 0 \Longrightarrow x^2 \le 9$                                                                      | ( 4 1 )      |           |
|     |     | $\Rightarrow -3 \le x \le 3$ $\sqrt{9 - x^2} \ne 0 \Rightarrow -3 < x < 3$                                     | (A1)<br>(A1) | (C2)      |
|     | (b) | METHOD 1                                                                                                       |              |           |
|     | (b) | $\begin{array}{c} y \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                    | (M1)         |           |
|     |     | $\Rightarrow y \ge 1$                                                                                          | (A1)         | (C2)      |
|     |     | METHOD 2                                                                                                       |              |           |
|     |     | Maximum value of $9 - x^2$ is $9 \Rightarrow$ minimum value of y is 1                                          | (A1)         |           |
|     |     | $9-x^2$ can be as close to zero as we wish, so there is no limit on how big y can be.<br>$\Rightarrow y \ge 1$ | (A1)         | (C2)      |

**Note:** Award *(C1)* for y > 0 with no working shown.

[4 marks]

- 12 -

11. (a) 
$$\overrightarrow{AB} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
  $\overrightarrow{AC} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$  (A1)

$$AB \cdot AC = 4(-3) + 3(1) = -9$$
 (A1) (C2)

(b) 
$$|\vec{AB}| = 5$$
  $|\vec{AC}| = \sqrt{10}$  (M1)  
 $\cos\theta = \frac{-9}{5\sqrt{10}}$  or  $-0.569 (3 \text{ s.f.})$ . (A1) (C2)

Note: Award (C1) for part (b) if the answer is given as  $124.7^{\circ}$  or  $125^{\circ}$ , and  $\cos\theta$  not shown.

[4 marks]  $2500 = 5000e^{-5k}$ 12. (a)  $\Rightarrow e^{-5k} = \frac{1}{2}$ (M1)  $e^{5k} = 2 \Longrightarrow 5k = \ln 2$  $\Rightarrow k = \frac{\ln 2}{5} \left(= 0.139 \left(3 \,\mathrm{s.f.}\right)\right)$ (A1) (C2)  $50 = 5000e^{-kt}$ (b)  $\Rightarrow \frac{1}{100} = e^{-kt}$ (M1)  $\Rightarrow e^{kt} = 100 \Rightarrow kt = \ln 100$  $\Rightarrow t = \frac{\ln 100}{k} = 33.2 \text{ (Accept 33.1)}$ (A1) (C2) [4 marks] (a)  $f(x) = 3x^2 - 12x + 11$ 13.  $= 3(x^2 - 4x + 4) + 11 - 12$ (M1) Award (M1) for a reasonable attempt to complete the square. Note:  $=3(x-2)^{2}-1$ (A1)  $\Rightarrow h = 2$  and k = -1*(C1)(C1)* **METHOD 1** (b) Vertex shifted to (2+3, -1+5) = (5, 4)(M1) so the new function is  $3(x-5)^2 + 4$ (A1)  $\Rightarrow p = 5, q = 4$ *(C1)(C1)* **METHOD 2**  $g(x) = 3((x-3)-h)^2 + k + 5$ (M1)  $=3((x-3)-2)^2-1+5$  $=3(x-5)^{2}+4$ (A1)  $\Rightarrow p = 5 \quad q = 4$ (C1)(C1) [4 marks]

| 14. | $\frac{-3+3+a+b}{4} = 0  (\Rightarrow a+b=0)$ | (M1) |
|-----|-----------------------------------------------|------|
|-----|-----------------------------------------------|------|

$$\frac{(-3)^2 + 3^2 + a^2 + b^2}{4} = 17$$
 (M1)

$$\Rightarrow a^{2} + b^{2} = 68 - 18 = 50$$

$$a = -b \Rightarrow 2a^{2} = 50$$

$$\Rightarrow a \pm 5 \qquad b = \mp 5 \qquad b > a$$
(A1)

$$\Rightarrow a = -5 \qquad b = 5 \tag{A1} (C2)(C2)$$

Note: Award the final (A1) only if a and b are both correctly assigned. Award (C3) for the answer -5, 5 if no working is shown.

#### [4 marks]

15. 
$$\binom{5}{2}(x^3)^2(-3y^2)^3$$
 (M1)  
 $\binom{5}{2} = 10, \ (-3y^2)^3 = -27y^6$  (A1)(A1)  
term = -270x<sup>6</sup>y<sup>6</sup> (A1) (C4)  
[4 marks]