MARKSCHEME

November 2001

MATHEMATICAL METHODS

Standard Level

Paper 2

1. (a) (i) $f^{\prime}(x)=-x+2$
(ii) $\quad f^{\prime}(0)=2$
(b) Gradient of tangent $=2 \Rightarrow$ gradient of normal $=\frac{-1}{2}=-0.5$
y-intercept is 2.5
Therefore, equation of the normal is $y=-0.5 x+2.5$
(c) $\quad-0.5 x^{2}+2 x+2.5=-0.5 x+2.5$
$\Rightarrow 0.5 x^{2}-2.5 x=0$
$\Rightarrow x^{2}-5 x=x(x-5)=0$
$\Rightarrow x=0$ or $x=5$
OR
$0.5 x^{2}-2.5 x=0$
$\Rightarrow x=0$ or $x=5$
(d) $x=5 \Rightarrow y=-0.5(5)+2.5=0$
(M1)
$(5,0)$
OR
Coordinates $(5,0)$
(e) Area $=\int_{0}^{5}\left(-0.5 x^{2}+2 x+2.5\right) \mathrm{d} x-\frac{1}{2} \times 5 \times 2.5$ (or equivalent)
(M2)(A1)

Note: Award (A1) for the correct limits on the integral.
(f) Area $=\left[-\frac{0.5 x^{3}}{3}+x^{2}+2.5 x\right]_{0}^{5}-\frac{25}{4}$

$$
\begin{equation*}
=\frac{125}{12}(\text { or } 10.4(3 \text { s.f. })) \tag{A1}
\end{equation*}
$$

OR
Area $=\frac{125}{12}=10.4$ (to 3 s.f.)
2. (a) $\mathrm{BC}^{2}=65^{2}+104^{2}-2(65)(104) \cos 60^{\circ}$
(M1)(A1)
$=4225+10816-6760=8281$
$\Rightarrow \mathrm{BC}=91 \mathrm{~m}$
OR
$B C=91 m$
(b) Area $A=\frac{1}{2}(65)(104) \sin 60^{\circ}$
$=1690 \sqrt{3}$
(M1)
(A1)
Therefore $p=1690$
(c) Smaller area $A_{1}=\left(\frac{1}{2}\right)(65)(x) \sin 30^{\circ}=\frac{65 x}{4}$

Larger area $A_{2}=\left(\frac{1}{2}\right)(104)(x) \sin 30^{\circ}=26 x$
(M1)(A1)
(d) $A_{1}+A_{2}=A$
$\Rightarrow \frac{65 x}{4}+26 x=1690 \sqrt{3}$
$\Rightarrow \frac{169 x}{4}=1690 \sqrt{3}$
$\Rightarrow x=\frac{4 \times 1690 \sqrt{3}}{169}$
$\Rightarrow x=40 \sqrt{3}$
Note: Award no marks for other methods.
(e) (i) $\mathrm{A} \hat{D} \mathrm{C}=180^{\circ}-\mathrm{ADB} \Rightarrow \sin \mathrm{A} \hat{\mathrm{D}} \mathrm{C}=\sin \mathrm{A} \hat{\mathrm{D} B}$
(ii) $\triangle \mathrm{ADB} \quad \frac{\mathrm{BD}}{\sin 30^{\circ}}=\frac{65}{\sin \mathrm{~A} \hat{\mathrm{DB}}} \Rightarrow \frac{\mathrm{BD}}{65}=\frac{\sin 30^{\circ}}{\sin \mathrm{ADB}}$
$\triangle \mathrm{ACD} \quad \frac{\mathrm{DC}}{\sin 30^{\circ}}=\frac{104}{\sin \mathrm{ADC}} \Rightarrow \frac{\mathrm{DC}}{104}=\frac{\sin 30^{\circ}}{\sin \mathrm{AD} \mathrm{C}}$
since $\sin \mathrm{AD} B=\sin \mathrm{A} \hat{\mathrm{D}} \mathrm{C}$

$$
\begin{align*}
& \frac{\mathrm{BD}}{65}=\frac{\mathrm{DC}}{104} \Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{65}{104} \\
& \Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{5}{8} \tag{AG}
\end{align*}
$$

3. (a)

Note: Award (A1) for labelled axes drawn with a straight edge, (A1) for maximum near $(3,1.3)$ (coordinates not required), (A1) for $(0,0)$, (A1) for the correct shape, with $y \rightarrow 0$ as $x \rightarrow 10$.
(b) (i) See above diagram
(ii) 4.41
(c) $y=0$
(d) (i) See line $y=1$ on above graph
(ii) $x_{1}=1.86, x_{2}=4.54$
(e) $(3.00,1.34)$
(G1)(G1)
[2 marks]
4. Note: In all parts, accept unsimplified fractions as the answers.
(a) $\mathrm{P}(\mathrm{RR})=\left(\frac{4}{6}\right)\left(\frac{3}{5}\right)=\frac{2}{5}$
(M1)(A1)

$$
\begin{align*}
\mathrm{P}(\mathrm{GG})=\left(\frac{2}{6}\right)\left(\frac{1}{5}\right)=\frac{1}{15} & \tag{A1}\\
\mathrm{P}(\mathrm{RG} \text { or GR }) & =\left(\frac{4}{6}\right)\left(\frac{2}{5}\right)+\left(\frac{2}{6}\right)\left(\frac{4}{5}\right) \tag{M1}\\
& =\frac{8}{15} \tag{A1}
\end{align*}
$$

OR

$$
\begin{align*}
P(R G \text { or } G R)=1-[P(R R)+P(G G)] & =1-\left(\frac{2}{5}+\frac{1}{15}\right) \tag{M1}\\
& =\frac{8}{15}
\end{align*}
$$

(b) $\quad \mathrm{P}(\mathrm{A})=\frac{1}{3} \quad \mathrm{P}(\mathrm{B})=\frac{2}{3}$

$$
\begin{aligned}
\mathrm{P}(\mathrm{RR}) & =\mathrm{P}(\mathrm{~A} \cap \mathrm{RR})+\mathrm{P}(\mathrm{~B} \cap \mathrm{RR}) \\
& =\left(\frac{1}{3}\right)\left(\frac{1}{10}\right)+\left(\frac{2}{3}\right)\left(\frac{2}{5}\right) \\
& =\frac{1}{30}+\frac{4}{15}=\frac{1}{30}+\frac{8}{30}=\frac{9}{30} \\
& \frac{9}{30}\left(=\frac{3}{10}\right)
\end{aligned}
$$

OR

Question 4 continued

$$
\text { (c) } \begin{align*}
\mathrm{P}(1 \text { or } 6) & =\mathrm{P}(\mathrm{~A}) \\
\mathrm{P}(\mathrm{~A} \mid \mathrm{RR}) & =\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{RR})}{\mathrm{P}(\mathrm{RR})} \\
& =\frac{\left[\left(\frac{1}{3}\right)\left(\frac{1}{10}\right)\right]}{\frac{3}{10}} \tag{M1}\\
& =\frac{1}{30} \times \frac{10}{3} \tag{M1}\\
& =\frac{1}{9}
\end{align*} \text { (M1) }
$$

5. (a) Line 1 and Line 3 or (AB) and (DC)
(b)

Note: Award (A1) for axes drawn with straight edge and labelled,
(A2) for 4 lines correctly drawn, (A1) for 3 correct, (A0) for 2 or fewer correct. Award (A1) for correctly identifying the vertices.

[4 marks]

(c) (i) $\mathrm{C}(7,23)$
(ii) Since D lies on Line 2 and Line 3, $x=-8+3 q=7-4 s \Rightarrow 3 q+4 s=15$
$y=3+11 q=23-3 s \Rightarrow 11 q+3 s=20$
$\Rightarrow q=1, s=3$
$\Rightarrow x=-8+3(1)=-5, y=3+11(1)=14$
Thus D is $(-5,14)$
OR
Consider $x=-5$ on Line $2, \Rightarrow-8+3 q=-5 \Rightarrow q=1$
$\Rightarrow y=3+11=14, \Rightarrow(-5,14)$ is on Line 2
Similarly for Line 3, 7-4s=-5
$\Rightarrow 7+5=4 s=12$
$\Rightarrow s=3, \Rightarrow y=23-9=14$
That is $(-5,14)$ is also on Line 3
Thus $\mathrm{D}(-5,14)$ is the intersection of Line 2 and Line 3

Question 5 continued

$$
\text { (d) } \begin{align*}
& \overrightarrow{\mathrm{AD}}=[-5-(-8)] \boldsymbol{i}+[14-3] \boldsymbol{j}=3 \boldsymbol{i}+11 \boldsymbol{j} \tag{A1}\\
&|-3 \boldsymbol{i}+4 \boldsymbol{j}|=\sqrt{(-3)^{2}+4^{2}}=5 \tag{A1}\\
& \text { Unit vector } \boldsymbol{u}=\frac{1}{5}(-3 \boldsymbol{i}+4 \boldsymbol{j}) \\
& \boldsymbol{u} \cdot \overrightarrow{\mathrm{AD}}=\frac{1}{5}[3(-3)+11(4)] \tag{M1}\\
&=7 \tag{A1}
\end{align*}
$$

$$
\text { (e) } \begin{align*}
&|\mathrm{AB}|=\sqrt{(12-(-8))^{2}+(18-3)^{2}}=25 \tag{A1}\\
&|\mathrm{CD}|=\sqrt{(-5-(7))^{2}+(14-23)^{2}}=15 \tag{A1}\\
& \text { Area }=\left(\frac{(25+15)}{2}\right)(7)=140 \tag{A1}
\end{align*}
$$

6.

Note: Throughout this question allow differences of ± 1 in the last figure of the answer.
Candidates may obtain slightly different values from tables and calculators.
(i) (a)

Observed				
	A	B	C	Total
P	47	95	58	200
P^{\prime}	103	145	152	400
Total	150	240	210	600

Expected				
	A	B	C	Total
P	$\mathbf{5 0}$	$\mathbf{8 0}$	$\mathbf{7 0}$	200
P^{\prime}	$\mathbf{1 0 0}$	$\mathbf{1 6 0}$	$\mathbf{1 4 0}$	400
Total	150	240	210	600

Note: Award (G3) for 5 or 6 correct bold values, (G2) for 3 or 4, (G1) for 1 or 2 .
OR
Assuming independence: $\left.\begin{array}{rl}P(\text { take physics }) & =\frac{200}{600}=\frac{1}{3} \\ P(\text { not take physics }) & =\frac{400}{600}=\frac{2}{3}\end{array}\right\}$
(M1)

Expected number taking physics at $\mathrm{A}=\frac{1}{3}(150)=50$
Expected number not taking physics at $\mathrm{A}=\frac{2}{3}(150)=100$
Expected number taking physics at $\mathrm{B}=\frac{1}{3}(240)=80$
Expected number not taking physics at $B=\frac{2}{3}(240)=160$
Expected number taking physics at $\mathrm{C}=\frac{1}{3}(210)=70$
Expected number not taking physics at $\mathrm{C}=\frac{2}{3}(210)=140$
(A2)

Note: Award (A2) for 6 correct answers, (A1) for 4 or 5, (A0) for 3 or less.
(b) $\quad \chi^{2}=\sum \frac{\left(f_{e}-f_{o}\right)^{2}}{f_{e}}$
(M1)

$$
\begin{align*}
\chi^{2} & =\frac{(50-47)^{2}}{50}+\frac{(100-103)^{2}}{100}+\frac{(80-95)^{2}}{80}+\frac{(160-145)^{2}}{160}+\frac{(70-58)^{2}}{70}+\frac{(140-152)^{2}}{140} \tag{A1}\\
& =\frac{9}{50}+\frac{9}{100}+\frac{225}{80}+\frac{225}{160}+\frac{144}{70}+\frac{144}{140} \tag{A1}\\
& =7.574 \tag{AG}
\end{align*}
$$

Note: Award (A0) for just giving the value $\chi^{2}=7.574$.

Question 6 (i) continued

(c) Number of degrees of freedom $=(2-1)(3-1)=2$

For 2 degrees of freedom
$\mathrm{P}\left(\chi^{2}>5.991\right)=0.05, \mathrm{P}\left(\chi^{2}>9.210\right)=0.01$
(i) Reject independence hypothesis at 5\% level
(ii) Accept independence hypothesis at 1% level

OR
$\mathrm{P}\left(\chi^{2}>7.574\right)=0.02266$
(G2)
(i) Reject independence hypothesis at 5\% level
(ii) Accept independence hypothesis at 1% level
(ii) (a) $\mu_{\bar{x}}=65$
(b) The standard error of the mean $\sigma_{E}=\frac{\sigma}{\sqrt{n}}=\frac{12}{\sqrt{25}}$
(M1)(A1)

Note: Award (M1) for correct expression, (A1) for substitution of values.
Therefore $\sigma_{E}=2.4$
(c) For normal population 95% of population is within 1.96 standard deviations of mean.
$65-1.96(2.4)<\bar{X}<65+1.96(2.4)$
(A1)(A1)
$60.3<\bar{X}<69.7$
OR
$60.3<\bar{X}<69.7$
(d) We require that $1.96 \sigma_{E}=\frac{5}{2}$
(M1)
(M1)

Note: Award (A1) for the correct smallest integer which is greater than the calculated value of n.

Question 6 continued

(iii) (a) That y is decreasing when x is increasing
(b) (i) $\quad r_{u}=-0.992$

OR
$\sigma_{x}=8.6487 \quad \sigma_{y}=0.44822 \quad \sigma_{x y}=\frac{65.8}{5}-11(1.546)=-3.846$
$r_{u}=\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=-0.992$
(ii) There is a stronger correlation between x^{2} and y than between x and y but it is not perfect.
(c) (i) There is a very strong linear relationship between x^{3} and y.
(ii) $y=-0.00983 v+1.99$

OR

$$
\begin{align*}
& a=\frac{S x y}{S x^{2}}=\frac{-20.426}{2078.0}=-0.00983 \tag{A1}\\
& S x^{2}=(45.585)^{2}=2078.0 \\
& S x y=\frac{245.72}{5}-45(1.546)=-20.426 \\
& \begin{aligned}
y-1.546 & =-0.00983(v-45) \\
y & =-0.00983 v+0.4423+1.546 \\
& =-0.00983 v+1.988 \\
b & =1.99
\end{aligned}
\end{align*}
$$

(A1)
(iii) Weight touches floor $\Rightarrow y=0$

$$
\Rightarrow-0.00983 v+1.99=0
$$

$$
\Rightarrow v=\frac{1.99}{0.00983}=202.4
$$

$$
v=x^{3} \Rightarrow x=\sqrt[3]{202.4}=5.87 \mathrm{~m}
$$

7. (i) (a) $a=4 \quad b=3$ (or -3)
(A1)(A1)
(b) $f^{\prime}(x)=\frac{\left(x^{2}-9\right) 2-2 x(2 x)}{\left(x^{2}-9\right)^{2}}$
(M1)(A1)

Note: Award (M1) for using the quotient rule and (A1) for correct substitution into the quotient rule.

$$
\begin{align*}
& =\frac{2 x^{2}-18-4 x^{2}}{\left(x^{2}-9\right)^{2}}(\text { or equivalent }) \tag{A1}\\
& =\frac{-2\left(x^{2}+9\right)}{\left(x^{2}-9\right)^{2}} \tag{AG}
\end{align*}
$$

(c) Since the numerator can never equal 0 ,
$f^{\prime}(x)$ can never equal $0 \Rightarrow$ no stationary points
(d) $(0,4)$
(e) $\quad F(x)=\int f(x) \mathrm{d} x$
$\int\left(a+\frac{2 x}{x^{2}-b^{2}}\right) \mathrm{d} x=a x+\ln \left|x^{2}-b^{2}\right|+C$
Note: Award (A1) for $a x$ (or $4 x$), (A2) for $\ln \left|x^{2}-b^{2}\right|$ or $\ln \left|x^{2}-9\right|$.
Do not penalise the omission of the absolute value sign or C.
(f) $\quad\left[4 x+\ln \left(x^{2}-9\right]_{4}^{11}=(44+\ln 112)-(16+\ln 7)\right.$
(M1)

$$
\begin{align*}
& =28+\ln \left(\frac{112}{7}\right)=28+\ln 16 \tag{A1}\\
& =28+4 \ln 2 \quad(\text { or } p=28 \quad q=4) \tag{A1}
\end{align*}
$$

Note: Award no marks for a calculator solution.
(ii) (a) $2 x^{3}=9 x^{2}-11 \Rightarrow x^{3}=\frac{9 x^{2}-11}{2}$

$$
\Rightarrow x=\sqrt[3]{\frac{\left(9 x^{2}-11\right)}{2}}
$$

(b) $\quad x_{0}=4.25$
$x_{1}=4.231755703$
$x_{2}=4.218754068$
Note: Award (A1) in each case provided the answers are correct as far as 3 decimal places.
(c) $\quad x=4.18614$ (6 s.f.)

Note: \quad Award (A1) for 4.18613 or 4.18615.
(iii) (a) $\int_{0}^{2} 3^{x} \mathrm{~d} x=\left[\frac{3^{x}}{\ln 3}\right]_{0}^{2}$
$\frac{3^{2}-3^{0}}{\ln 3}=\frac{8}{\ln 3}$
(AG)
(b) $\quad h=\frac{2-0}{2}=1$
$\Rightarrow \frac{1}{2}\left[3^{0}+2\left(3^{1}\right)+3^{2}\right]$
$=\frac{1}{2}(1+6+9)=\frac{16}{2}$
$=8$
(A1)
OR

$$
\text { Area }=8
$$

Notes: This may be calculated as sum of areas of 2 trapezia. If incorrect form of the trapezium rule used do not use $\mathbf{f t}$ in part (b) but allow ft later.
(c) $8-\frac{8}{\ln 3}=0.718086 \ldots$,

Question 7 (iii) continued
(d) $\frac{0.18}{0.72}=0.25$
(M1)

Error with 20.72
Error with $4 \quad 0.18$
Error with $8 \quad 0.045$
Error with 160.01125
Error with 320.0028125
Error with 640.000703 (M1)
$\Rightarrow 64$ intervals
Note: Award (M2)(A0) if a candidate sets up a geometric sequence but gets the answer 32 or 128.
8. (i)
(a) $\left(\begin{array}{cc}-3 & -4 \\ 4 & -3\end{array}\right)\binom{1}{0}=\binom{-3}{4}$
$(-3,4)=$ image of $(1,0)$
(A1)

$$
\begin{aligned}
\left(\begin{array}{cc}
-3 & -4 \\
4 & -3
\end{array}\right)\binom{0}{1} & =\binom{-4}{-3} \\
(-4,-3) & =\text { image of }(0,1)
\end{aligned}
$$

Note: Award (A1)(A0) if both correct answers are left as a column vector, not written as coordinates.
(b) (i) $\quad \overrightarrow{\mathrm{OA}^{\prime}}=\binom{-3}{4} \Rightarrow\left|\overrightarrow{\mathrm{OA}^{\prime}}\right|=\sqrt{(-3)^{2}+4^{2}}$

$$
\begin{equation*}
=5 \tag{A1}
\end{equation*}
$$

(ii) $\quad \overrightarrow{\mathrm{OC}}^{\prime}=\binom{-4}{-3} \Rightarrow\left|\overrightarrow{\mathrm{OC}^{\prime}}\right|=\sqrt{(-4)^{2}+(-3)^{2}}$

$$
\begin{equation*}
=5 \tag{A1}
\end{equation*}
$$

$$
\text { (iii) } \begin{aligned}
\quad \overrightarrow{\mathrm{OA}^{\prime}} \cdot \overrightarrow{\mathrm{OC}}^{\prime} & =(-3)(-4)+(4)(-3) \\
& =0
\end{aligned}
$$

(c) $\mathrm{OA}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is a square of side 5 units
(d) $\quad \boldsymbol{P}=\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)$
(e) $\quad \boldsymbol{R}\left(\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right)=\left(\begin{array}{cc}-3 & -4 \\ 4 & -3\end{array}\right)$
$\Rightarrow \boldsymbol{R}=\frac{1}{5}\left(\begin{array}{cc}-3 & -4 \\ 4 & -3\end{array}\right)$ or $\left(\begin{array}{rr}-\frac{3}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5}\end{array}\right)$

Question 8 (i) continued

(f) The matrix representing a rotation through θ is:
$\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$, where $\cos \theta=-\frac{3}{5}$
$\Rightarrow \theta=126.9^{\circ}$
$\Rightarrow \theta=126.9^{\circ}$
Note: A diagram may also be used together with basic trigonometry to achieve $\theta=126.9^{\circ}$. Award full marks.
(ii)
(a) $\begin{aligned} \operatorname{det} & =6-(-5)=11 \\ \operatorname{inv} & =\frac{1}{11}\left(\begin{array}{cc}3 & 1 \\ -5 & 2\end{array}\right) \text { or }\left(\begin{array}{rr}\frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & \frac{2}{11}\end{array}\right)\end{aligned}$

OR
$\operatorname{inv}=\left(\begin{array}{cc}2 & -1 \\ 5 & 3\end{array}\right)^{-1}=\left(\begin{array}{cc}\frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & \frac{2}{11}\end{array}\right)$
(b) $\quad X=\left(\begin{array}{cc}2 & -1 \\ 5 & 3\end{array}\right)^{-1}\left(\begin{array}{cc}4 & -4 \\ -1 & 12\end{array}\right)$

Notes: Award (M1) for using the inverse, (M1) for the inverse in front. Allow ft from part (a).
(c) $\quad\left(\begin{array}{rr}\frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & \frac{2}{11}\end{array}\right)\left(\begin{array}{cc}4 & -4 \\ -1 & 12\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ -2 & 4\end{array}\right)$

Notes: Award (A1) if one or two matrix coefficients incorrect, award (A0) if more than 2 incorrect.
Allow $\mathbf{f t}$ from part (b), award (A2), for $\frac{1}{11}\left(\begin{array}{cc}32 & -4 \\ -63 & 23\end{array}\right)$ if the order was reversed.

Question 8 continued

(iii) (a) (i) $\quad\left(\begin{array}{cc}0.6 & 0.8 \\ 0.8 & -0.6\end{array}\right)\binom{3}{4}=\binom{5}{0}$

$$
\begin{equation*}
\binom{5}{0}+\binom{-2}{4}=\binom{3}{4} \tag{A1}
\end{equation*}
$$

(ii) $\quad\left(\begin{array}{cc}0.6 & 0.8 \\ 0.8 & -0.6\end{array}\right)\binom{-1}{2}=\binom{1}{-2}$

$$
\begin{equation*}
\binom{1}{-2}+\binom{-2}{4}=\binom{-1}{2} \tag{A1}
\end{equation*}
$$

OR
(i) $\binom{3}{4}$
(ii) $\binom{-1}{2}$
(b) $(3,4)$ and $(-1,2)$ are invariant points and therefore must lie on the line of reflection.

Gradient $=\frac{4-2}{3-(-1)}=\frac{1}{2}$
$\Rightarrow y-4=\frac{1}{2}(x-3)$
$\Rightarrow x-2 y+5=0$ or $-x+2 y-5=0$
(iv) (a) $\quad N=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(b) $\quad\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{3}{2}+\binom{h}{k}=\binom{3}{2}$
$\Rightarrow-2+h=3 \quad 3+k=2$
$\Rightarrow h=5 \quad k=-1$
(A1)(A1)

