# MATHEMATICAL METHODS STANDARD LEVEL PAPER 1 

Name


Number
Friday 9 November 2001 (afternoon)
1 hour

## INSTRUCTIONS TO CANDIDATES

- Write your name and candidate number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or to three significant figures, as appropriate.
- Write the make and model of your calculator in the box below e.g. Casio $f x-9750 G$, Sharp EL-9600, Texas Instruments TI-85.

Calculator

| Make | Model |
| :--- | :--- |
|  |  |


| EXAMINER | TEAM LEADER |  | IBCA |  |  |
| :---: | :--- | :--- | :--- | :---: | :---: |
| TOTAL | TOTAL |  | TOTAL |  |  |
|  |  | 160 |  |  |  |

Maximum marks will be given for correct answers. Where an answer is wrong, some marks may be given for a correct method provided this is shown by written working. Working may be continued below the box, if necessary. Where graphs from a graphic display calculator are being used to find solutions, you should sketch these graphs as part of your answer.

1. The first three terms of an arithmetic sequence are $7,9.5,12$.
(a) What is the $41^{\text {st }}$ term of the sequence?
(b) What is the sum of the first 101 terms of the sequence?

Working:

Answers:
(a)
(b) $\qquad$
2. The diagram below shows a line passing through the points $(1,3)$ and $(6,5)$.


Find a vector equation for the line, giving your answer in the form

$$
\binom{x}{y}=\binom{a}{b}+t\binom{c}{d} \text {, where } t \text { is any real number. }
$$

Working:

Answer:
3. The diagram shows parts of the graphs of $y=x^{2}$ and $y=5-3(x-4)^{2}$.


The graph of $y=x^{2}$ may be transformed into the graph of $y=5-3(x-4)^{2}$ by these transformations.

A reflection in the line $y=0$
a vertical stretch with scale factor $k$
a horizontal translation of $p$ units
a vertical translation of $q$ units.
followed by
followed by
followed by

Write down the value of
(a) $k$;
(b) $p$;
(c) $q$.

## Working:

Answers:
(a)
(b)
(c) $\qquad$
4. The diagram below shows a sector AOB of a circle of radius 15 cm and centre O . The angle $\theta$ at the centre of the circle is 2 radians.

(a) Calculate the area of the sector AOB .
(b) Calculate the area of the shaded region.

Working:

Answers:
(a)
(b)
5. Solve the equation $\log _{9} 81+\log _{9}\left(\frac{1}{9}\right)+\log _{9} 3=\log _{9} x$. Working:

Answer:
6. The following Venn diagram shows the universal set $U$ and the sets $A$ and $B$.

(a) Shade the area in the diagram which represents the set $B \cap A^{\prime}$.
$n(U)=100, n(A)=30, n(B)=50, n(A \cup B)=65$.
(b) Find $n\left(B \cap A^{\prime}\right)$.
(c) An element is selected at random from $U$. What is the probability that this element is in $B \cap A^{\prime}$ ?

## Working:

Answers:
(b)
(c)
) $\qquad$
7. Consider the function $f(x)=k \sin x+3 x$, where $k$ is a constant.
(a) Find $f^{\prime}(x)$.
(b) When $x=\frac{\pi}{3}$, the gradient of the curve of $f(x)$ is 8 . Find the value of $k$.

Working:

Answers:
(a)
(b)
8. The diagram below shows the graph of $y=x \sin \left(\frac{x}{3}\right)$, for $0 \leq x<m$, and $0 \leq y<n$, where $x$ is in radians and $m$ and $n$ are integers.


Find the value of
(a) $m$;
(b) $n$.

Working:

Answers:
(a)
(b)
9. Given that $f(x)=2 \mathrm{e}^{3 x}$, find the inverse function $f^{-1}(x)$.

## Working:

Answer:
10. Consider the binomial expansion $(1+x)^{4}=1+\binom{4}{1} x+\binom{4}{2} x^{2}+\binom{4}{3} x^{3}+x^{4}$.
(a) By substituting $x=1$ into both sides, or otherwise, evaluate $\binom{4}{1}+\binom{4}{2}+\binom{4}{3}$.
(b) Evaluate $\binom{9}{1}+\binom{9}{2}+\binom{9}{3}+\binom{9}{4}+\binom{9}{5}+\binom{9}{6}+\binom{9}{7}+\binom{9}{8}$.

## Working:

Answers:
(a)
(b)
$\qquad$
$\qquad$
11. The vectors $\binom{2 x}{x-3}$ and $\binom{x+1}{5}$ are perpendicular for two values of $x$.
(a) Write down the quadratic equation which the two values of $x$ must satisfy.
(b) Find the two values of $x$.

Working:

## Answers:

(a)
(b)
12. The diagrams below show two triangles both satisfying the conditions

$$
\mathrm{AB}=20 \mathrm{~cm}, \mathrm{AC}=17 \mathrm{~cm}, \mathrm{~A} \widehat{\mathrm{BC}}=50^{\circ}
$$

Triangle 1


Triangle 2

(a) Calculate the size of $\mathrm{A} \widehat{C} B$ in Triangle 2.
(b) Calculate the area of Triangle 1.

## Working:

Answers:
(a)
(b) $\qquad$
13. The events $B$ and $C$ are dependent, where $C$ is the event "a student takes Chemistry", and $B$ is the event "a student takes Biology". It is known that

$$
\mathrm{P}(C)=0.4, \mathrm{P}(B \mid C)=0.6, \mathrm{P}\left(B \mid C^{\prime}\right)=0.5
$$

(a) Complete the following tree diagram.

Chemistry Biology

(b) Calculate the probability that a student takes Biology.
(c) Given that a student takes Biology, what is the probability that the student takes Chemistry?

Working:

Answers:
(b) $\qquad$
(c)
14. The depth, $y$ metres, of sea water in a bay $t$ hours after midnight may be represented by the function

$$
y=a+b \cos \left(\frac{2 \pi}{k} t\right), \text { where } a, b \text { and } k \text { are constants. }
$$

The water is at a maximum depth of 14.3 m at midnight and noon, and is at a minimum depth of 10.3 m at 06:00 and at 18:00 .

Write down the value of
(a) $a$;
(b) $b$;
(c) $k$.

Working:

Answers:
(a)
(b)
(c)
15. Consider the function $f: x \mapsto \arcsin (3 x)$.
(a) For this function to be defined, $-a \leq 3 x \leq a$. Find the maximum value of $a$. Use this value of $a$ in parts (b) and (c).
(b) Find the domain of $f$.
(c) The range of $f$ may be written as $-b \leq y \leq b$. Find the value of $b$.

Working:

Answers:
(a)
(b)
(c)

